device_gemm_xdl.hpp 20 KB
Newer Older
1
2
3
4
#ifndef DEVICE_GEMM_XDL_HPP
#define DEVICE_GEMM_XDL_HPP

#include <iostream>
Chao Liu's avatar
Chao Liu committed
5
#include <sstream>
6
7
8
9
10
11
12
13
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
14
#include "gemm_specialization.hpp"
15
16
17
18
19
20
21
22
23
24
25
26

namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
Chao Liu's avatar
Chao Liu committed
27
28
29
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
30
          GemmSpecialization_t GemmSpecialization,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadClusterLengths_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
46
          bool ABlockLdsAddExtraM,
47
48
49
50
51
52
          typename BBlockTransferThreadClusterLengths_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
53
          bool BBlockLdsAddExtraN,
54
          ck::index_t CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
55
          ck::index_t CThreadTransferDstScalarPerVector>
Chao Liu's avatar
Chao Liu committed
56
57
struct DeviceGemmXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto a_grid_desc_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
            }
        }();

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
        {
            const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;

            return transform_tensor_descriptor(
                a_grid_desc_m_k,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_right_pad_transform(M, PadM)),
                make_tuple(Sequence<1>{}, Sequence<0>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
        else
        {
            return transform_tensor_descriptor(
                a_grid_desc_m_k,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_pass_through_transform(M)),
                make_tuple(Sequence<1>{}, Sequence<0>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    }

    static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto b_grid_desc_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
            }
        }();

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
        {
            const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

            return transform_tensor_descriptor(
                b_grid_desc_k_n,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_right_pad_transform(N, PadN)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
        else
        {
            return transform_tensor_descriptor(
                b_grid_desc_k_n,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_pass_through_transform(N)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
141
142
143
144
    }

    static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
    {
145
146
147
148
149
150
151
152
153
154
155
156
        const auto c_grid_desc_m_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
            }
        }();

        if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
157
        {
158
159
160
161
162
163
164
165
            const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
            const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

            return transform_tensor_descriptor(
                c_grid_desc_m_n,
                make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0>{}, Sequence<1>{}));
166
        }
167
        else
168
        {
169
170
171
172
173
174

            return transform_tensor_descriptor(
                c_grid_desc_m_n,
                make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0>{}, Sequence<1>{}));
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        }
    }

    using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
    using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
    using CGridDesc_M_N     = decltype(MakeCGridDescriptor_M_N(1, 1, 1));

    // GridwiseGemm
    using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
Chao Liu's avatar
Chao Liu committed
192
193
194
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
Chao Liu's avatar
Chao Liu committed
210
        ABlockLdsAddExtraM,
211
212
213
214
215
216
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
217
218
        false, // BThreadTransferSrcResetCoordinateAfterRun,
        BBlockLdsAddExtraN,
219
220
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
221
        CThreadTransferDstScalarPerVector>;
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
Chao Liu's avatar
Chao Liu committed
236
237
238
239
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
240
241
242
243
244
245
246
247
248
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_k0_m_k1_{},
              b_grid_desc_k0_n_k1_{},
              c_grid_desc_m_n_{},
              c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
Chao Liu's avatar
Chao Liu committed
249
250
251
252
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        {
            a_grid_desc_k0_m_k1_ = DeviceGemmXdl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
            b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
            c_grid_desc_m_n_     = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);

            if(GridwiseGemm::CheckValidity(
                   a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
            {
                c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);

                block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
        BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
        CGridDesc_M_N c_grid_desc_m_n_;
Chao Liu's avatar
Chao Liu committed
275
276
277
        typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
            c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
        typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
278
279
        index_t M01_;
        index_t N01_;
Chao Liu's avatar
Chao Liu committed
280
281
282
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceGemmXdl::Argument;

        float Run(const Argument& arg, int nrepeat = 1)
        {
            {
                std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
                          << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
                          << arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
                          << ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
                          << arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
                          << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
            }

            if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                            arg.b_grid_desc_k0_n_k1_,
                                            arg.c_grid_desc_m_n_,
                                            arg.M01_,
                                            arg.N01_))
            {
                throw std::runtime_error(
                    "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
            }

            const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);

            const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);

            const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;

            if(has_main_k0_block_loop)
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
331
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
332
333
334
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
335
                    remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
336
337
338
339
340
341
342
343
344
345
346
347
348
                    true>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
349
350
351
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
352
353
354
355
356
357
358
359
360
361
                                                  arg.block_2_ctile_map_);
            }
            else
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
362
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
363
364
365
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
366
                    remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
367
368
369
370
371
372
373
374
375
376
377
378
379
                    false>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
380
381
382
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
                                                  arg.block_2_ctile_map_);
            }

            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                           arg.b_grid_desc_k0_n_k1_,
                                           arg.c_grid_desc_m_n_,
                                           arg.M01_,
                                           arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
Chao Liu's avatar
Chao Liu committed
425
426
427
428
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
429
    {
Chao Liu's avatar
Chao Liu committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op};
444
445
446
447
448
449
450
451
452
453
454
455
456
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
Chao Liu's avatar
Chao Liu committed
457
458
459
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
ltqin's avatar
ltqin committed
460
                                                      CElementwiseOperation c_element_op,
Anthony Chang's avatar
Anthony Chang committed
461
                                                      index_t /* KBatch */ = 1) override
462
463
464
465
466
467
468
469
470
471
472
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
Chao Liu's avatar
Chao Liu committed
473
474
475
476
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);
477
478
479
480
481
482
483
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }
Chao Liu's avatar
Chao Liu committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

    // polymorphic
    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "DeviceGemmXdl"
            << "<"
            << BlockSize << ", "
            << MPerBlock << ", "
            << NPerBlock << ", "
            << K0PerBlock
            << ">";
        // clang-format on

        return str.str();
    }
502
503
504
505
506
507
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif