parse_perf_data.py 12.2 KB
Newer Older
1
#!/usr/bin/env python3
2
import os, io, argparse, datetime, re
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import sqlalchemy
from sqlalchemy.types import NVARCHAR, Float, Integer
import pymysql
import pandas as pd
from sshtunnel import SSHTunnelForwarder

def print_to_string(*args, **kwargs):
    output = io.StringIO()
    print(*args, file=output, **kwargs)
    contents = output.getvalue()
    output.close()
    return contents

def parse_args():
    parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs')
    parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files')
    args = parser.parse_args()
    files = []
    if os.path.isdir(args.filename):
        all_files = os.listdir(args.filename)
        for name in all_files:
            if not 'log' in name:
                continue
            files.append(os.path.join(args.filename, name))
    else:
        files = [args.filename]
    args.files = files
    return args

def main():
    args = parse_args()
    tests = []
    kernels=[]
    tflops=[]
    dtype=[]
    alayout=[]
    blayout=[]
    M=[]
    N=[]
    K=[]
    StrideA=[]
    StrideB=[]
    StrideC=[]
    #parse results, get the Tflops value for "Best Perf" kernels
48

49
50
51
52
53
54
    glue=""
    for filename in args.files:
        for line in open(filename):
            if 'Branch name' in line:
                lst=line.split()
                branch_name=lst[2]
55
56
57
            if 'On branch' in line:
                lst=line.split()
                branch_name=lst[2]
58
59
60
61
62
            if 'Node name' in line:
                lst=line.split()
                node_id=lst[2]
            if 'GPU_arch' in line:
                lst=line.split()
63
                gpu_arch=lst[2]
64
            if 'HIP version' in line:
65
                lst=line.split()
66
                hip_vers=lst[2]
67
68
69
            if 'Compute Unit' in line:
                lst=line.split()
                compute_units=lst[2]
70
71
72
            if 'InstalledDir' in line:
                lst=line.split()
                rocm_vers=lst[1][lst[1].find('/opt/rocm-')+len('/opt/rocm-'):lst[1].rfind('/llvm/bin')]
73
    print("Branch name:",branch_name)
74
75
    print("Node name:",node_id)
    print("GPU_arch:",gpu_arch)
76
    print("Compute units:",compute_units)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    print("ROCM_version:",rocm_vers)
    print("HIP_version:",hip_vers)


    #parse gemm performance tests:
    if 'gemm' in filename:
        for filename in args.files:
            for line in open(filename):
                if 'Best Perf' in line:
                    lst=line.split()
                    if len(lst)>=37: #the line is complete
                        tests.append(glue.join(lst[5:30]))
                        kernels.append(glue.join(lst[37:]))
                        tflops.append(lst[33])
                        dtype.append(lst[5])
                        alayout.append(lst[8])
                        blayout.append(lst[11])
                        M.append(lst[14])
                        N.append(lst[17])
                        K.append(lst[20])
                        StrideA.append(lst[23])
                        StrideB.append(lst[26])
                        StrideC.append(lst[29])
                    elif len(lst)<37 and len(lst)>=33: #the tflops are available
                        tests.append(glue.join(lst[5:30]))
                        kernels.append("N/A")
                        tflops.append(lst[33])
                        dtype.append(lst[5])
                        alayout.append(lst[8])
                        blayout.append(lst[11])
                        M.append(lst[14])
                        N.append(lst[17])
                        K.append(lst[20])
                        StrideA.append(lst[23])
                        StrideB.append(lst[26])
                        StrideC.append(lst[29])
                        print("warning: incomplete line:",lst)
                    elif len(lst)<33: #even the tflops are not available
                        print("Error in ckProfiler output!")
                        print("warning: incomplete line=",lst)
        #sort results
        #sorted_tests = sorted(tests)
        #print("sorted tests:",sorted_tests)
        sorted_tflops = [x for _,x in sorted(zip(tests,tflops))]
        #sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
        test_list=list(range(1,len(tests)+1))

    #parse resnet50 performance tests:
    if 'resnet50' in filename:
        for filename in args.files:
            for line in open(filename):
                if 'Best Perf' in line:
                    lst=line.split()
                    tflops.append(lst[4])
131

132
    print("Number of tests:",len(tflops))
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    sql_hostname = '127.0.0.1'
    sql_username = os.environ["dbuser"]
    sql_password = os.environ["dbpassword"]
    sql_main_database = 'miopen_perf'
    sql_port = 3306
    ssh_host = os.environ["dbsship"]
    ssh_user = os.environ["dbsshuser"]
    ssh_port = int(os.environ["dbsshport"])
    ssh_pass = os.environ["dbsshpassword"]

    with SSHTunnelForwarder(
            (ssh_host, ssh_port),
            ssh_username=ssh_user,
            ssh_password=ssh_pass,
            remote_bind_address=(sql_hostname, sql_port)) as tunnel:

        sqlEngine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}'.
            format(sql_username, sql_password, sql_hostname, tunnel.local_bind_port, sql_main_database))
        conn = sqlEngine.connect()

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        #save gemm performance tests:
        if 'gemm' in filename:

            #write the ck_gemm_test_params table
            #only needed once the test set changes
            '''
            sorted_dtypes = [x for _,x in sorted(zip(tests,dtype))]
            sorted_alayout = [x for _,x in sorted(zip(tests,alayout))]
            sorted_blayout = [x for _,x in sorted(zip(tests,blayout))]
            sorted_M = [x for _,x in sorted(zip(tests,M))]
            sorted_N = [x for _,x in sorted(zip(tests,N))]
            sorted_K = [x for _,x in sorted(zip(tests,K))]
            sorted_StrideA = [x for _,x in sorted(zip(tests,StrideA))]
            sorted_StrideB = [x for _,x in sorted(zip(tests,StrideB))]
            sorted_StrideC = [x for _,x in sorted(zip(tests,StrideC))]
            ck_gemm_params=[test_list,sorted_dtypes,sorted_alayout,sorted_blayout,
                        sorted_M,sorted_N,sorted_K,sorted_StrideA,sorted_StrideB,
                        sorted_StrideC]
            df=pd.DataFrame(np.transpose(ck_gemm_params),columns=['Test_number','Data_type',
                'Alayout','BLayout','M','N','K', 'StrideA','StrideB','StrideC'])
            print(df)

            dtypes = {
                'Test_number': Integer(),
                'Data_type': NVARCHAR(length=5),
                'Alayout': NVARCHAR(length=12),
                'Blayout': NVARCHAR(length=12),
                'M': Integer(),
                'N': Integer(),
                'K': Integer(),
                'StrideA': Integer(),
                'StrideB': Integer(),
                'StrideC': Integer()
                }
            df.to_sql("ck_gemm_test_params",conn,if_exists='replace',index=False, dtype=dtypes)
            '''

            #read baseline results for the latest develop branch
            query = '''SELECT * from ck_gemm_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_gemm_tflops where Branch_ID='develop' );'''
            tflops_base = pd.read_sql_query(query, conn)

            #write new results to the db
            testlist=[]
            for i in range(1,len(tests)+1):
                testlist.append("Test%i"%i)
198
199
            ck_gemm_tflops=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(datetime.datetime.now())]
            flops=pd.DataFrame(data=[ck_gemm_tflops],columns=['Branch_ID','Node_ID','GPU_arch','Compute Units','ROCM_version','HIP_version','Datetime'])
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            df_add=pd.DataFrame(data=[sorted_tflops],columns=testlist)
            flops=pd.concat([flops,df_add],axis=1)
            print("new tflops for gemm tests:",flops)
            flops.to_sql("ck_gemm_tflops",conn,if_exists='append',index=False)

        #save resnet50 performance tests:
        if 'resnet50' in filename:
            #read baseline results for the latest develop branch
            query = '''SELECT * from ck_resnet50_N256_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_resnet50_N256_tflops where Branch_ID='develop' );'''
            tflops_base_N256 = pd.read_sql_query(query, conn)
            query = '''SELECT * from ck_resnet50_N4_tflops WHERE Datetime = (SELECT MAX(Datetime) FROM ck_resnet50_N4_tflops where Branch_ID='develop' );'''
            tflops_base_N4 = pd.read_sql_query(query, conn)

            #write new results to the db
            testlist=[]
            for i in range(1,50):
                testlist.append("Layer%i"%i)
217
218
            ck_resnet_tflops=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(datetime.datetime.now())]
            flops0=pd.DataFrame(data=[ck_resnet_tflops],columns=['Branch_ID','Node_ID','GPU_arch','Compute Units','ROCM_version','HIP_version','Datetime'])
219
220
221
222
223
224
225
226
227
            df_add=pd.DataFrame(data=[tflops[0:49]],columns=testlist)
            flops=pd.concat([flops0,df_add],axis=1)
            print("new tflops for N=256 resnet50 test:",flops)
            flops.to_sql("ck_resnet50_N256_tflops",conn,if_exists='append',index=False)
            df_add=pd.DataFrame(data=[tflops[49:98]],columns=testlist)
            flops=pd.concat([flops0,df_add],axis=1)
            print("new tflops for N=4 resnet50 test:",flops)
            flops.to_sql("ck_resnet50_N4_tflops",conn,if_exists='append',index=False)

228
229
        conn.close()

230
    #compare the results to the baseline if baseline exists
231
    regression=0
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    if 'gemm' in filename:
        if not tflops_base.empty:
            base=tflops_base[testlist].to_numpy(dtype='float')
            base_list=base[0]
            ave_perf=0
            for i in range(len(base_list)):
                # success criterion:
                if base_list[i]>1.01*float(sorted_tflops[i]):
                    print("test # ",i,"shows regression by {:.3f}%".format(
                        (float(sorted_tflops[i])-base_list[i])/base_list[i]*100))
                    regression=1
                ave_perf=ave_perf+float(sorted_tflops[i])/base_list[i]
            if regression==0:
                print("no regressions found")
            ave_perf=ave_perf/len(base_list)
            print("average performance relative to baseline:",ave_perf)
        else:
            print("could not find a baseline")
    if 'resnet50' in filename:
        if not tflops_base_N256.empty:
            base=tflops_base_N256[testlist].to_numpy(dtype='float')
            base_list=base[0]
            ave_perf=0
            for i in range(len(base_list)):
                # success criterion:
                if base_list[i]>1.01*float(tflops[i]):
                    print("layer # ",i,"shows regression by {:.3f}%".format(
                        (float(tflops[i])-base_list[i])/base_list[i]*100))
                    regression=1
                ave_perf=ave_perf+float(tflops[i])/base_list[i]
            if regression==0:
                print("no regressions found")
            ave_perf=ave_perf/len(base_list)
            print("average performance relative to baseline:",ave_perf)
        else:
            print("could not find a baseline for N=256")
        if not tflops_base_N4.empty:
            base=tflops_base_N4[testlist].to_numpy(dtype='float')
            base_list=base[0]
            ave_perf=0
            for i in range(len(base_list)):
                # success criterion:
                if base_list[i]>1.01*float(tflops[i+49]):
                    print("layer # ",i,"shows regression by {:.3f}%".format(
                        (float(tflops[i+49])-base_list[i])/base_list[i]*100))
                    regression=1
                ave_perf=ave_perf+float(tflops[i+49])/base_list[i]
            if regression==0:
                print("no regressions found")
            ave_perf=ave_perf/len(base_list)
            print("average performance relative to baseline:",ave_perf)
        else:
            print("could not find a baseline for N=4")
285
286
287
288
289

    #return 0 if performance criteria met, otherwise return 1
    return regression

if __name__ == '__main__':
290
    main()