tensor.hpp 7.27 KB
Newer Older
1
2
3
#ifndef CK_TENSOR_HPP
#define CK_TENSOR_HPP

Chao Liu's avatar
Chao Liu committed
4
5
6
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
7
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
8
#include <utility>
Chao Liu's avatar
Chao Liu committed
9
10
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
11

Chao Liu's avatar
Chao Liu committed
12
template <class Range>
Chao Liu's avatar
Chao Liu committed
13
std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim)
Chao Liu's avatar
Chao Liu committed
14
15
{
    bool first = true;
Chao Liu's avatar
Chao Liu committed
16
    for(auto&& v : range)
Chao Liu's avatar
Chao Liu committed
17
18
19
20
21
    {
        if(first)
            first = false;
        else
            os << delim;
Chao Liu's avatar
Chao Liu committed
22
        os << v;
Chao Liu's avatar
Chao Liu committed
23
24
25
26
    }
    return os;
}

Chao Liu's avatar
Chao Liu committed
27
typedef enum {
Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
33
34
35
36
37
38
39
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
68
69
70
struct TensorDescriptor
{
    TensorDescriptor() = delete;
Chao Liu's avatar
Chao Liu committed
71
72
    TensorDescriptor(std::initializer_list<std::size_t> lens);
    TensorDescriptor(std::initializer_list<std::size_t> lens,
Chao Liu's avatar
Chao Liu committed
73
                     std::initializer_list<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
74
    TensorDescriptor(std::vector<std::size_t> lens, std::vector<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
75
76
77
78

    void CalculateStrides();

    template <class Range>
Chao Liu's avatar
Chao Liu committed
79
    TensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
Chao Liu's avatar
Chao Liu committed
80
81
82
83
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
84
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
85
86
    TensorDescriptor(const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
Chao Liu's avatar
Chao Liu committed
87
88
    {
    }
Chao Liu's avatar
Chao Liu committed
89

Chao Liu's avatar
Chao Liu committed
90
    std::size_t GetNumOfDimension() const;
Chao Liu's avatar
Chao Liu committed
91
92
93
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
94
95
96
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
97
    template <class... Is>
98
    std::size_t GetOffsetFromMultiIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
99
    {
Chao Liu's avatar
Chao Liu committed
100
        assert(sizeof...(Is) == this->GetNumOfDimension());
Chao Liu's avatar
Chao Liu committed
101
102
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
103
104
105
106
107
108
109
    }

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;
};

Chao Liu's avatar
Chao Liu committed
110
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
111
{
Chao Liu's avatar
Chao Liu committed
112
113
114
115
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
116

Chao Liu's avatar
Chao Liu committed
117
118
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
119

Chao Liu's avatar
Chao Liu committed
120
121
122
123
124
125
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
126
127
128
129
130

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
131
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
146
147
148
149
150
151
152
153
154
155
156
157
158
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
159
    void operator()(std::size_t num_thread) const
Chao Liu's avatar
Chao Liu committed
160
161
162
163
164
165
166
167
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
168
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
169
170
171

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
172
173
174
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
175
176
177
178
179
180
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
181
182
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
183
{
Chao Liu's avatar
Chao Liu committed
184
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
185
186
}

Chao Liu's avatar
Chao Liu committed
187
188
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
189
{
Chao Liu's avatar
Chao Liu committed
190
    template <class X>
Chao Liu's avatar
Chao Liu committed
191
    Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
192
193
    {
    }
Chao Liu's avatar
Chao Liu committed
194

Chao Liu's avatar
Chao Liu committed
195
    template <class X>
Chao Liu's avatar
Chao Liu committed
196
    Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
197
198
    {
    }
Chao Liu's avatar
Chao Liu committed
199

Chao Liu's avatar
Chao Liu committed
200
201
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
Chao Liu's avatar
Chao Liu committed
202
        : mDesc(lens, strides), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
203
204
    {
    }
Chao Liu's avatar
Chao Liu committed
205

Chao Liu's avatar
Chao Liu committed
206
207
    Tensor(const TensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}

Chao Liu's avatar
Chao Liu committed
208
209
210
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
Chao Liu's avatar
Chao Liu committed
211
        switch(mDesc.GetNumOfDimension())
Chao Liu's avatar
Chao Liu committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
251
        return mData[mDesc.GetOffsetFromMultiIndex(is...)];
Chao Liu's avatar
Chao Liu committed
252
253
254
255
256
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
257
        return mData[mDesc.GetOffsetFromMultiIndex(is...)];
Chao Liu's avatar
Chao Liu committed
258
259
260
261
262
263
264
265
266
267
268
269
270
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};
271
272

#endif