conv_fwd_driver_online.cpp 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "conv_common.hpp"
#include "host_conv.hpp"
#include "device_tensor.hpp"
15
16
17
18
19
20
#include "handle.hpp"
#include "hipCheck.hpp"
#include "online_device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
#include "online_device_dynamic_convolution_forward_implicit_gemm_v6r1_nchw_kcyx_nkhw.hpp"
#include "online_device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw.hpp"
#include "online_device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nhwc_kyxc_nhwk.hpp"
21

22
#define USE_CONV_FWD_V4R4_NCHW 1
23
#define USE_CONV_FWD_V6R1_NCHW 1
24
25
#define USE_CONV_FWD_V4R4_XDLOPS_NCHW 1
#define USE_CONV_FWD_V4R4_XDLOPS_NHWC 1
26
27
28

enum ConvForwardAlgo
{
29
    V4R4NCHW,    // 0
30
    V6R1NCHW,    // 1
31
32
    V4R4XDLNCHW, // 2
    V4R4XDLNHWC  // 3
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
};

int main(int argc, char* argv[])
{
    using namespace ck;
    using size_t = std::size_t;

    hipStream_t stream;
    olCompile::Handle* handle;

    MY_HIP_CHECK(hipStreamCreate(&stream));

    handle = new olCompile::Handle(stream);

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};
    constexpr auto I4 = Number<4>{};
    constexpr auto I5 = Number<5>{};
    constexpr auto I6 = Number<6>{};

    if(argc != 22)
    {
        printf("arg1 to 5: layout, algo, do_verification, init_method, do_log, nrepeat\n");
        printf("rest: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx\n");
        exit(1);
    }

    const ConvTensorLayout layout = static_cast<ConvTensorLayout>(atoi(argv[1]));
    const ConvForwardAlgo algo    = static_cast<ConvForwardAlgo>(atoi(argv[2]));
    const bool do_verification    = atoi(argv[3]);
    const int init_method         = atoi(argv[4]);
    const bool do_log             = atoi(argv[5]);
    const int nrepeat             = atoi(argv[6]);

    const index_t N  = atoi(argv[7]);
    const index_t K  = atoi(argv[8]);
    const index_t C  = atoi(argv[9]);
    const index_t Y  = atoi(argv[10]);
    const index_t X  = atoi(argv[11]);
    const index_t Hi = atoi(argv[12]);
    const index_t Wi = atoi(argv[13]);

    const index_t conv_stride_h   = atoi(argv[14]);
    const index_t conv_stride_w   = atoi(argv[15]);
    const index_t conv_dilation_h = atoi(argv[16]);
    const index_t conv_dilation_w = atoi(argv[17]);
    const index_t in_left_pad_h   = atoi(argv[18]);
    const index_t in_left_pad_w   = atoi(argv[19]);
    const index_t in_right_pad_h  = atoi(argv[20]);
    const index_t in_right_pad_w  = atoi(argv[21]);

    const index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const index_t XEff = (X - 1) * conv_dilation_w + 1;

    const index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

#if 1
93
94
95
    using in_data_t  = float;
    using acc_data_t = float;
    using out_data_t = float;
96
#elif 1
97
98
99
100
101
102
103
    using in_data_t  = half_t;
    using acc_data_t = float;
    using out_data_t = half_t;
#elif 1
    using in_data_t  = int8_t;
    using acc_data_t = int32_t;
    using out_data_t = int8_t;
104
105
106
107
108
109
110
111
#endif

    std::vector<std::size_t> in_lengths_host(4), wei_lengths_host(4), out_lengths_host(4);

    switch(layout)
    {
    case ConvTensorLayout::NCHW:
        // NCHW
112
113
114
115
116
        in_lengths_host[0] = static_cast<std::size_t>(N);
        in_lengths_host[1] = static_cast<std::size_t>(C);
        in_lengths_host[2] = static_cast<std::size_t>(Hi);
        in_lengths_host[3] = static_cast<std::size_t>(Wi);

117
118
119
120
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(C);
        wei_lengths_host[2] = static_cast<std::size_t>(Y);
        wei_lengths_host[3] = static_cast<std::size_t>(X);
121

122
123
124
125
126
127
128
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(K);
        out_lengths_host[2] = static_cast<std::size_t>(Ho);
        out_lengths_host[3] = static_cast<std::size_t>(Wo);
        break;
    case ConvTensorLayout::NHWC:
        // NHWC
129
130
131
132
133
        in_lengths_host[0] = static_cast<std::size_t>(N);
        in_lengths_host[1] = static_cast<std::size_t>(Hi);
        in_lengths_host[2] = static_cast<std::size_t>(Wi);
        in_lengths_host[3] = static_cast<std::size_t>(C);

134
135
136
137
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(Y);
        wei_lengths_host[2] = static_cast<std::size_t>(X);
        wei_lengths_host[3] = static_cast<std::size_t>(C);
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(Ho);
        out_lengths_host[2] = static_cast<std::size_t>(Wo);
        out_lengths_host[3] = static_cast<std::size_t>(K);
        break;
    default: throw std::runtime_error("wrong! not implemented");
    }

    Tensor<in_data_t> in(in_lengths_host);
    Tensor<in_data_t> wei(wei_lengths_host);
    Tensor<out_data_t> out_host(out_lengths_host);
    Tensor<out_data_t> out_device(out_lengths_host);

    std::cout << "layout: " << layout << std::endl;
    ostream_HostTensorDescriptor(in.mDesc, std::cout << "in: ");
    ostream_HostTensorDescriptor(wei.mDesc, std::cout << "wei: ");
    ostream_HostTensorDescriptor(out_host.mDesc, std::cout << "out: ");
    print_array("InLeftPads", make_tuple(in_left_pad_h, in_left_pad_w));
    print_array("InRightPads", make_tuple(in_right_pad_h, in_right_pad_w));
    print_array("ConvStrides", make_tuple(conv_stride_h, conv_stride_w));
    print_array("ConvDilations", make_tuple(conv_dilation_h, conv_dilation_w));

    std::size_t num_thread = std::thread::hardware_concurrency();

163
    switch(init_method)
164
    {
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    case 0:
        // no initialization
        break;
    case 1:
        in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 2:
        in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 3:
        in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 4:
        in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 5:
        in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
        break;
    default:
        in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei.GenerateTensorValue(gen_wei, num_thread);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    }

    auto f_make_for_device_nchw = [&]() {
        const auto in_lengths_dev  = make_tuple(N, C, Hi, Wi);
        const auto wei_lengths_dev = make_tuple(K, C, Y, X);
        const auto out_lengths_dev = make_tuple(N, K, Ho, Wo);

        return make_tuple(in_lengths_dev, wei_lengths_dev, out_lengths_dev);
    };

    auto f_make_for_device_nhwc = [&]() {
        const auto in_lengths_dev  = make_tuple(N, Hi, Wi, C);
        const auto wei_lengths_dev = make_tuple(K, Y, X, C);
        const auto out_lengths_dev = make_tuple(N, Ho, Wo, K);

        return make_tuple(in_lengths_dev, wei_lengths_dev, out_lengths_dev);
    };

    const auto conv_strides   = make_tuple(conv_stride_h, conv_stride_w);
    const auto conv_dilations = make_tuple(conv_dilation_h, conv_dilation_w);
    const auto in_left_pads   = make_tuple(in_left_pad_h, in_left_pad_w);
    const auto in_right_pads  = make_tuple(in_right_pad_h, in_right_pad_w);

#if USE_CONV_FWD_V4R4_NCHW
    if(algo == ConvForwardAlgo::V4R4NCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        tunable_dyn_conv_fwd_v4r4_nchw_kcyx_nkhw* tunable =
            &default_tunable_dyn_conv_fwd_v4r4_nchw_kcyx_nkhw;

231
232
233
        online_device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw<in_data_t,
                                                                                    acc_data_t,
                                                                                    out_data_t>(
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
            handle,
            tmp[I0],
            tmp[I1],
            tmp[I2],
            conv_strides,
            conv_dilations,
            in_left_pads,
            in_right_pads,
            in,
            wei,
            out_device,
            tunable,
            nrepeat);
    }
#endif

250
251
#if USE_CONV_FWD_V6R1_NCHW
    if(algo == ConvForwardAlgo::V6R1NCHW)
252
253
254
255
256
257
258
259
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

260
        const auto tunable = tunable_dyn_conv_fwd_v6r1_nchw_kcyx_nkhw{};
261

262
263
264
        online_device_dynamic_convolution_forward_implicit_gemm_v6r1_nchw_kcyx_nkhw<in_data_t,
                                                                                    acc_data_t,
                                                                                    out_data_t>(
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            handle,
            tmp[I0],
            tmp[I1],
            tmp[I2],
            conv_strides,
            conv_dilations,
            in_left_pads,
            in_right_pads,
            in,
            wei,
            out_device,
            tunable,
            nrepeat);
    }
#endif

281
282
283
284
285
286
287
288
289
290
291
292
293
#if USE_CONV_FWD_V4R4_XDLOPS_NCHW
    if(algo == ConvForwardAlgo::V4R4XDLNCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        tunable_dyn_conv_fwd_v4r4_xdlops_nchw_kcyx_nkhw* tunable =
            &default_tunable_dyn_conv_fwd_v4r4_xdlops_nchw_kcyx_nkhw;

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        online_device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw<
            in_data_t,
            acc_data_t,
            out_data_t>(handle,
                        tmp[I0],
                        tmp[I1],
                        tmp[I2],
                        conv_strides,
                        conv_dilations,
                        in_left_pads,
                        in_right_pads,
                        in,
                        wei,
                        out_device,
                        tunable,
                        nrepeat);
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    }
#endif

#if USE_CONV_FWD_V4R4_XDLOPS_NHWC
    if(algo == ConvForwardAlgo::V4R4XDLNHWC)
    {
        if(layout != ConvTensorLayout::NHWC)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nhwc();

        tunable_dyn_conv_fwd_v4r4_xdlops_nhwc_kyxc_nhwk* tunable =
            &default_tunable_dyn_conv_fwd_v4r4_xdlops_nhwc_kyxc_nhwk;

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        online_device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nhwc_kyxc_nhwk<
            in_data_t,
            acc_data_t,
            out_data_t>(handle,
                        tmp[I0],
                        tmp[I1],
                        tmp[I2],
                        conv_strides,
                        conv_dilations,
                        in_left_pads,
                        in_right_pads,
                        in,
                        wei,
                        out_device,
                        tunable,
                        nrepeat);
342
343
344
    }
#endif

345
346
    if(do_verification)
    {
347
348
349
350
351
352
353
354
        host_direct_convolution(in,
                                wei,
                                out_host,
                                make_tuple(conv_stride_h, conv_stride_w),
                                make_tuple(conv_dilation_h, conv_dilation_w),
                                make_tuple(in_left_pad_h, in_left_pad_w),
                                make_tuple(in_right_pad_h, in_right_pad_w),
                                layout);
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

        check_error(out_host, out_device);

        if(do_log)
        {
            LogRange(std::cout << "in : ", in.mData, ",") << std::endl;
            LogRange(std::cout << "wei: ", wei.mData, ",") << std::endl;
            LogRange(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
            LogRange(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
        }
    }

    delete handle;
    MY_HIP_CHECK(hipStreamDestroy(stream));
}