"driver/vscode:/vscode.git/clone" did not exist on "98716c8329c11e26d48e26254bda956bafa2dbcf"
pool2d_fwd.cpp 12.3 KB
Newer Older
1
2
3
4
5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
6
7

#include "check_err.hpp"
8
9
10
11
12
13
14
15
16
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduce_util.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "reduction_operator.hpp"
Chao Liu's avatar
Chao Liu committed
17
#include "device_pool2d_fwd_nhwc_nhwc.hpp"
18
19
20
21
22
23
24
25
26

using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;

using InLayout  = ck::tensor_layout::convolution::NHWC;
using OutLayout = ck::tensor_layout::convolution::NHWC;

#if 1
27
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
28
#else
29
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#endif

static constexpr bool NeedIndices  = false;
static constexpr bool PropagateNan = false;

using DevicePoolFwdInstance =
    ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
        InDataType,  // InDataType
        OutDataType, // OutDataType
        AccDataType, // AccDataType
        ReduceOpId,
        NeedIndices,
        64, // BlockSize
        64, // ReduceMThreadClusterSize
        1,  // ReduceKThreadClusterSize
        4,  // ReduceMThreadSliceSize
        1,  // ReduceKThreadSliceSize
        4>; // InSrcOutDstVectorSize

template <typename InDataType,
          typename OutDataType,
          typename AccDataType,
52
          ck::ReduceTensorOp ReduceOpId,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
          bool PropagateNan,
          bool NeedIndices>
static void pool_host_verify(const Tensor<InDataType>& in,
                             Tensor<OutDataType>& out,
                             Tensor<int>& out_indices,
                             const std::array<ck::index_t, 2>& window_spatial_lengths,
                             const std::array<ck::index_t, 2>& window_strides,
                             const std::array<ck::index_t, 2>& in_left_pads,
                             const std::array<ck::index_t, 2>& /*in_right_pads*/)
{
    using namespace ck::host_reduce;

    const int divider = window_spatial_lengths[0] * window_spatial_lengths[1];

    const auto PreUnaryOp = PreUnaryOpFn<AccDataType, ReduceOpId>(divider);
    const auto PosUnaryOp = PosUnaryOpFn<AccDataType, ReduceOpId>(divider);

    if constexpr(!NeedIndices)
    {
        auto opReduce = ReduceOpFn<AccDataType, ReduceOpId>();

        auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
            auto accuVal = ReduceOpZeroVal<AccDataType, ReduceOpId>();

            for(int y = 0; y < window_spatial_lengths[0]; ++y)
            {
                int hi = ho * window_strides[0] + y - in_left_pads[0];
                for(int x = 0; x < window_spatial_lengths[1]; ++x)
                {
                    int wi = wo * window_strides[1] + x - in_left_pads[1];
83
84
                    if(hi >= 0 && hi < ck::type_convert<int>(in.mDesc.GetLengths()[2]) && wi >= 0 &&
                       wi < ck::type_convert<int>(in.mDesc.GetLengths()[3]))
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
                    {
                        AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));

                        PreUnaryOp(currVal);

                        binop_with_nan_check<AccDataType, PropagateNan>(opReduce, accuVal, currVal);
                    }
                }
            }

            PosUnaryOp(accuVal);

            out(n, c, ho, wo) = accuVal;
        };

        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
    }
    else
    {
        auto opReduce = ReduceOpFn2<AccDataType, ReduceOpId>();

        auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
            auto accuVal  = ReduceOpZeroVal<AccDataType, ReduceOpId>();
            int accuIndex = 0;

            for(int y = 0; y < window_spatial_lengths[0]; ++y)
            {
                int hi = ho * window_strides[0] + y - in_left_pads[0];
                for(int x = 0; x < window_spatial_lengths[1]; ++x)
                {
                    int wi = wo * window_strides[1] + x - in_left_pads[1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[3])
                    {
                        AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
                        int currIndex       = y * window_spatial_lengths[1] + x;

                        PreUnaryOp(currVal);

                        binop_with_nan_check2<AccDataType, PropagateNan>(
                            opReduce, accuVal, currVal, accuIndex, currIndex);
                    }
                }
            }

            PosUnaryOp(accuVal);

            out(n, c, ho, wo)         = accuVal;
            out_indices(n, c, ho, wo) = accuIndex;
        };

        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
    };
}

int main(int argc, char* argv[])
{
    using namespace ck::host_reduce;

    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;

    // Pool shape
    ck::index_t N               = 128;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t window_stride_h = 2;
    ck::index_t window_stride_w = 2;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
    }
    else if(argc == 16)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        N               = std::stoi(argv[4]);
        C               = std::stoi(argv[5]);
        Y               = std::stoi(argv[6]);
        X               = std::stoi(argv[7]);
        Hi              = std::stoi(argv[8]);
        Wi              = std::stoi(argv[9]);
        window_stride_h = std::stoi(argv[10]);
        window_stride_w = std::stoi(argv[11]);
        in_left_pad_h   = std::stoi(argv[12]);
        in_left_pad_w   = std::stoi(argv[13]);
        in_right_pad_h  = std::stoi(argv[14]);
        in_right_pad_w  = std::stoi(argv[15]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        exit(0);
    }

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;

    const std::array<ck::index_t, 2> window_spatial_lengths{{Y, X}};
    const std::array<ck::index_t, 2> window_strides{{window_stride_h, window_stride_w}};
    const std::array<ck::index_t, 2> input_left_pads{{in_left_pad_h, in_left_pad_w}};
    const std::array<ck::index_t, 2> input_right_pads{{in_right_pad_h, in_right_pad_w}};

    // tensor layout
    auto f_host_tensor_descriptor =
        [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
            if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
            }
            else if constexpr(ck::is_same<decltype(layout),
                                          ck::tensor_layout::convolution::NHWC>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
            }
        };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<int> out_indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<int> out_indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
241
242
243
    case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}); break;
    case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
    default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    }

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * out_n_c_ho_wo_device.mDesc.GetElementSpace());
    DeviceMem out_indices_device_buf(sizeof(int) *
                                     out_indices_n_c_ho_wo_device.mDesc.GetElementSpace());

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());

    auto pool        = DevicePoolFwdInstance{};
    auto invoker_ptr = pool.MakeInvokerPointer();
    auto argument_ptr =
        pool.MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                 static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                 static_cast<int*>(out_indices_device_buf.GetDeviceBuffer()),
                                 N,
                                 C,
                                 std::array<ck::index_t, 2>{{Hi, Wi}},
                                 std::array<ck::index_t, 2>{{Y, X}},
                                 std::array<ck::index_t, 2>{{Ho, Wo}},
                                 window_strides,
                                 input_left_pads,
                                 input_right_pads);

    if(!pool.IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

    std::size_t flop = std::size_t(2) * N * C * Ho * Wo * Y * X;

    std::size_t num_btype =
        sizeof(InDataType) * (N * C * Hi * Wi) + sizeof(OutDataType) * (N * C * Ho * Wo);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    if(do_verification)
    {
        pool_host_verify<InDataType,
                         OutDataType,
                         AccDataType,
                         ReduceOpId,
                         PropagateNan,
                         NeedIndices>(in_n_c_hi_wi,
                                      out_n_c_ho_wo_host,
                                      out_indices_n_c_ho_wo_host,
                                      window_spatial_lengths,
                                      window_strides,
                                      input_left_pads,
                                      input_right_pads);

        out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());

305
        ck::utils::check_err(out_n_c_ho_wo_device.mData, out_n_c_ho_wo_host.mData);
306
307
308
309
310

        if constexpr(NeedIndices)
        {
            out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());

311
312
            //          ck::utils::check_err(out_indices_n_c_ho_wo_device.mData,
            //          out_indices_n_c_ho_wo_host.mData);;
313
314
315
        };
    }
}