test_layernorm_util.hpp 8.05 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <vector>
#include <iostream>
#include <gtest/gtest.h>

#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
rocking5566's avatar
rocking5566 committed
12
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
rocking5566's avatar
rocking5566 committed
13
14

#include "ck/library/utility/check_err.hpp"
15
16
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/device_memory.hpp"
rocking5566's avatar
rocking5566 committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

namespace ck {

template <typename Range>
std::string serialize_range(const Range& range)
{
    std::stringstream ss;
    for(auto& r : range)
    {
        ss << r << ", ";
    }
    std::string str = ss.str();
    return std::string(str.begin(), str.end() - 2);
}

template <typename Tuple>
class TestLayernorm : public ::testing::Test
{
    protected:
    using XDataType                             = std::tuple_element_t<0, Tuple>;
    using GammaDataType                         = std::tuple_element_t<1, Tuple>;
    using BetaDataType                          = std::tuple_element_t<2, Tuple>;
    using AccDataType                           = std::tuple_element_t<3, Tuple>;
    using YDataType                             = std::tuple_element_t<4, Tuple>;
    static constexpr index_t Rank               = std::tuple_element_t<5, Tuple>{}.value;
    static constexpr index_t NumReduceDim       = std::tuple_element_t<6, Tuple>{}.value;
    static constexpr index_t BlockSize          = std::tuple_element_t<7, Tuple>{}.value;
    static constexpr index_t MThreadClusterSize = std::tuple_element_t<8, Tuple>{}.value;
    static constexpr index_t KThreadClusterSize = std::tuple_element_t<9, Tuple>{}.value;
    static constexpr index_t MThreadSliceSize   = std::tuple_element_t<10, Tuple>{}.value;
    static constexpr index_t KThreadSliceSize   = std::tuple_element_t<11, Tuple>{}.value;
    static constexpr index_t XYSrcVectorDim     = std::tuple_element_t<12, Tuple>{}.value;
    static constexpr index_t XSrcVectorSize     = std::tuple_element_t<13, Tuple>{}.value;
    static constexpr index_t GammaSrcVectorSize = std::tuple_element_t<14, Tuple>{}.value;
    static constexpr index_t BetaSrcVectorSize  = std::tuple_element_t<15, Tuple>{}.value;
    static constexpr index_t YDstVectorSize     = std::tuple_element_t<16, Tuple>{}.value;

    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    using ReferenceInstance = tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                         GammaDataType,
                                                                         BetaDataType,
                                                                         YDataType,
                                                                         AccDataType,
                                                                         PassThrough,
                                                                         Rank,
                                                                         NumReduceDim>;

rocking5566's avatar
rocking5566 committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    using DeviceInstance = tensor_operation::device::DeviceLayernormImpl<XDataType,
                                                                         GammaDataType,
                                                                         BetaDataType,
                                                                         AccDataType,
                                                                         YDataType,
                                                                         PassThrough,
                                                                         Rank,
                                                                         NumReduceDim,
                                                                         BlockSize,
                                                                         MThreadClusterSize,
                                                                         KThreadClusterSize,
                                                                         MThreadSliceSize,
                                                                         KThreadSliceSize,
                                                                         XYSrcVectorDim,
                                                                         XSrcVectorSize,
                                                                         GammaSrcVectorSize,
                                                                         BetaSrcVectorSize,
                                                                         YDstVectorSize>;
rocking5566's avatar
rocking5566 committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    TestLayernorm() : ref_instance_invoker_(ReferenceInstance{}.MakeInvoker()) {}

    void RunSingle(std::vector<index_t> lengths, std::vector<index_t> reduceDims)
    {
        std::vector<index_t> reduceLength(reduceDims.size());
        for(int i = 0; i < NumReduceDim; ++i)
        {
            reduceLength[i] = lengths[reduceDims[i]];
        }

        Tensor<XDataType> x(lengths);
        Tensor<GammaDataType> gamma(reduceLength);
        Tensor<BetaDataType> beta(reduceLength);
        Tensor<YDataType> y(lengths);
        Tensor<YDataType> y_ref(lengths);

        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1.0});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

105
106
107
108
        DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
        DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
        DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
        DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
rocking5566's avatar
rocking5566 committed
109
110
111
112
113
114
115
116
117
118
119
120
121

        x_dev.ToDevice(x.mData.data());
        gamma_dev.ToDevice(gamma.mData.data());
        beta_dev.ToDevice(beta.mData.data());

        auto device_instance = DeviceInstance{};
        auto argument_ptr    = device_instance.MakeArgumentPointer(
            lengths,
            std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
            std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(),
                                     gamma.mDesc.GetStrides().end()},
            std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(),
                                     beta.mDesc.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
122
            std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            reduceDims,
            1e-4,
            x_dev.GetDeviceBuffer(),
            gamma_dev.GetDeviceBuffer(),
            beta_dev.GetDeviceBuffer(),
            y_dev.GetDeviceBuffer(),
            PassThrough{});

        if(!device_instance.IsSupportedArgument(argument_ptr.get()))
        {
            return;
        }

        auto invoker_ptr = device_instance.MakeInvokerPointer();
        invoker_ptr->Run(argument_ptr.get());

        ref_instance_invoker_.Run(
            {x, gamma, beta, y_ref, PassThrough{}, lengths, reduceDims, 1e-4});

        y_dev.FromDevice(y.mData.data());

        bool pass;

        if(std::is_same<XDataType, int8_t>::value)
        {
            EXPECT_TRUE(pass = ck::utils::check_err(
                            y.mData, y_ref.mData, "Error: Incorrect results!", 0, 1));
        }
        else
        {
            EXPECT_TRUE(pass = ck::utils::check_err(
                            y.mData, y_ref.mData, "Error: Incorrect results d1", 1e-3, 1e-3));
        }

        if(!pass)
        {
            FAIL() << "Failure in input lengths = [" << serialize_range(lengths) << "], "
                   << "reduce dim = [" << serialize_range(reduceDims) << "].";
        }
    }

    void Run()
    {
        for(auto length : this->lengths_)
        {
            this->RunSingle(length, reduceDims_[0]);
        }
    }

    std::vector<std::vector<index_t>> lengths_ = {
        {4, 256}, {8, 511}, {9, 1032}, {4, 2048}, {1, 8192}, {4000, 2000}};

    std::vector<std::vector<index_t>> reduceDims_ = {{1}};

    typename ReferenceInstance::Invoker ref_instance_invoker_;
};
} // namespace ck