mistral.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Woosuk Kwon's avatar
Woosuk Kwon committed
23
"""Inference-only Mistral model compatible with HuggingFace weights."""
24
25
26
27
from typing import List, Optional, Tuple

import torch
from torch import nn
28
from transformers import MistralConfig
29
30
31

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
Woosuk Kwon's avatar
Woosuk Kwon committed
32
from vllm.model_executor.layers.attention import PagedAttention
33
34
35
36
37
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               RowParallelLinear)
Woosuk Kwon's avatar
Woosuk Kwon committed
38
from vllm.model_executor.layers.rotary_embedding import get_rope
39
from vllm.model_executor.layers.sampler import Sampler
40
41
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
42
from vllm.model_executor.parallel_utils.parallel_state import (
43
    get_tensor_model_parallel_world_size)
44
from vllm.model_executor.sampling_metadata import SamplingMetadata
45
46
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
47
48
49
50
51
52
53
54
55
56
57
58
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


class MistralMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
59
        linear_method: Optional[LinearMethodBase] = None,
60
61
    ) -> None:
        super().__init__()
62
63
64
65
66
67
68
69
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            linear_method=linear_method)
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           linear_method=linear_method)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class MistralAttention(nn.Module):

    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 num_kv_heads: int,
                 max_position: int = 4096 * 32,
                 rope_theta: float = 10000,
90
                 linear_method: Optional[LinearMethodBase] = None,
91
92
93
94
95
96
97
98
                 sliding_window: Optional[int] = None) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
99
100
101
102
103
104
105
106
107
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
108
109
110
111
112
113
114
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.sliding_window = sliding_window

115
        self.qkv_proj = QKVParallelLinear(
116
117
            hidden_size,
            self.head_dim,
118
119
            self.total_num_heads,
            self.total_num_kv_heads,
120
            bias=False,
121
            linear_method=linear_method,
122
        )
123
        self.o_proj = RowParallelLinear(
124
125
126
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
127
            linear_method=linear_method,
128
        )
Woosuk Kwon's avatar
Woosuk Kwon committed
129
130
131
132
133
134
135
136
137
138
139
140

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=self.rope_theta,
        )
        self.attn = PagedAttention(self.num_heads,
                                   self.head_dim,
                                   self.scaling,
                                   num_kv_heads=self.num_kv_heads,
                                   sliding_window=self.sliding_window)
141
142
143
144
145
146
147
148
149
150

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
151
        q, k = self.rotary_emb(positions, q, k)
152
        k_cache, v_cache = kv_cache
153
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
154
155
156
157
158
159
160
161
162
        output, _ = self.o_proj(attn_output)
        return output


class MistralDecoderLayer(nn.Module):

    def __init__(
        self,
        config: MistralConfig,
163
        linear_method: Optional[LinearMethodBase] = None,
164
165
166
167
168
169
170
171
172
173
174
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        # Requires transformers > 4.32.0
        rope_theta = getattr(config, "rope_theta", 10000)
        self.self_attn = MistralAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
175
            linear_method=linear_method,
176
177
178
179
180
            sliding_window=config.sliding_window)
        self.mlp = MistralMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
181
            linear_method=linear_method,
182
183
184
185
186
187
188
189
190
191
192
193
        )
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
194
195
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
196
        # Self Attention
197
198
199
200
201
202
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
203
204
205
206
207
208
209
210
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )

        # Fully Connected
211
212
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
213
        hidden_states = self.mlp(hidden_states)
214
        return hidden_states, residual
215
216
217
218
219
220
221


class MistralModel(nn.Module):

    def __init__(
        self,
        config: MistralConfig,
222
        linear_method: Optional[LinearMethodBase] = None,
223
224
225
226
227
228
229
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
230
            config.vocab_size,
231
232
            config.hidden_size,
        )
233
        self.layers = nn.ModuleList([
234
            MistralDecoderLayer(config, linear_method)
235
236
237
238
239
240
241
242
243
244
245
246
            for _ in range(config.num_hidden_layers)
        ])
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
247
        residual = None
248
249
        for i in range(len(self.layers)):
            layer = self.layers[i]
250
            hidden_states, residual = layer(
251
252
253
254
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
255
                residual,
256
            )
257
        hidden_states, _ = self.norm(hidden_states, residual)
258
259
260
261
262
263
264
265
        return hidden_states


class MistralForCausalLM(nn.Module):

    def __init__(
        self,
        config: MistralConfig,
266
        linear_method: Optional[LinearMethodBase] = None,
267
268
269
    ) -> None:
        super().__init__()
        self.config = config
270
271
272
        self.linear_method = linear_method
        self.model = MistralModel(config, linear_method)
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
273
274
275
276
277
278
279
280
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
281
    ) -> torch.Tensor:
282
        hidden_states = self.model(input_ids, positions, kv_caches,
283
                                   input_metadata)
284
285
286
287
288
289
        return hidden_states

    def sample(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
290
    ) -> Optional[SamplerOutput]:
291
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
292
                                   sampling_metadata)
293
294
295
296
297
298
299
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
300
301
302
303
304
305
306
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
307
        ]
308
        params_dict = dict(self.named_parameters())
309
310
311
312
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            if "rotary_emb.inv_freq" in name:
                continue
313
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
314
315
                if weight_name not in name:
                    continue
CHU Tianxiang's avatar
CHU Tianxiang committed
316
317
318
319
320
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
321
322
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
323
                break
324
            else:
CHU Tianxiang's avatar
CHU Tianxiang committed
325
326
327
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
328
329
330
331
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)