"ppocr/losses/rec_ctc_loss.py" did not exist on "bc93c549fede50b6f5485fcd02a9657d2d4f55f9"
qwen.py 10.8 KB
Newer Older
Qing's avatar
Qing committed
1
2
3
4
5
6
7
8
9
10
# coding=utf-8
# Adapted from
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
"""Inference-only QWen model compatible with HuggingFace weights.

The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
11
from typing import List, Optional, Tuple
Qing's avatar
Qing committed
12
13
14
15
16
17
18
19
20
21

import torch
from torch import nn

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
22
    convert_pyslice_to_tensor,
Qing's avatar
Qing committed
23
    hf_model_weights_iterator,
JFDuan's avatar
JFDuan committed
24
    load_padded_tensor_parallel_vocab,
Qing's avatar
Qing committed
25
26
27
28
29
30
31
32
33
34
35
    load_tensor_parallel_weights,
)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
from vllm.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding,
    ColumnParallelLinear,
    RowParallelLinear,
)
36
from vllm.sequence import SamplerOutput
Qing's avatar
Qing committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from vllm.transformers_utils.configs.qwen import QWenConfig

KVCache = Tuple[torch.Tensor, torch.Tensor]


class QWenMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str = "silu",
    ):
        super().__init__()
        self.gate_up_proj = ColumnParallelLinear(
            hidden_size,
            2 * intermediate_size,
            bias=False,
            gather_output=False,
            perform_initialization=False,
        )
        self.c_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            input_is_parallel=True,
            perform_initialization=False,
        )
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.c_proj(x)
        return x


class QWenAttention(nn.Module):

    def __init__(self, hidden_size: int, num_heads: int,
                 max_position_embeddings: int):
        super().__init__()
        self.hidden_size = hidden_size
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
        )
        self.total_num_heads = num_heads
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = (self.total_num_heads //
                          tensor_model_parallel_world_size)
        self.head_dim = hidden_size // self.total_num_heads

        # pylint: disable=invalid-name
        self.c_attn = ColumnParallelLinear(
            hidden_size,
            3 * hidden_size,
            bias=True,
            gather_output=False,
            perform_initialization=False,
        )
        self.c_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            input_is_parallel=True,
            perform_initialization=False,
        )
        self.scaling = self.head_dim**-0.5
        self.attn = PagedAttentionWithRoPE(
            self.num_heads,
            self.head_dim,
            self.scaling,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.c_attn(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)

        k_cache, v_cache = kv_cache
        attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
                                input_metadata, cache_event)

        output, _ = self.c_proj(attn_output)
        return output


class QWenBlock(nn.Module):

    def __init__(self, config: QWenConfig):
        super().__init__()
        self.ln_1 = RMSNorm(config.n_embd, eps=config.layer_norm_epsilon)

        self.attn = QWenAttention(config.n_embd, config.num_attention_heads,
                                  config.max_position_embeddings)

        self.ln_2 = RMSNorm(config.n_embd, eps=config.layer_norm_epsilon)

        self.mlp = QWenMLP(config.n_embd, config.ffn_hidden_size // 2)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        hidden_states = self.attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


class QWenModel(nn.Module):

    def __init__(self, config: QWenConfig):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size

        vocab_size = ((config.vocab_size + 63) // 64) * 64
        self.wte = VocabParallelEmbedding(vocab_size,
                                          config.n_embd,
                                          perform_initialization=False)
        self.h = nn.ModuleList(
            [QWenBlock(config) for _ in range(config.num_hidden_layers)])
        self.ln_f = RMSNorm(config.n_embd, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.wte(input_ids)
        for i in range(len(self.h)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.h[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class QWenLMHeadModel(nn.Module):

    def __init__(self, config: QWenConfig):
        super().__init__()
        self.config = config
        self.transformer = QWenModel(config)
        vocab_size = ((config.vocab_size + 63) // 64) * 64
        self.lm_head = ColumnParallelLinear(
            config.n_embd,
            vocab_size,
            bias=False,
            gather_output=False,
            perform_initialization=False,
        )
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
239
    ) -> SamplerOutput:
Qing's avatar
Qing committed
240
241
242
243
244
245
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata, cache_events)
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
                                   input_metadata)
        return next_tokens

JFDuan's avatar
JFDuan committed
246
    _column_parallel_weights = []
Qing's avatar
Qing committed
247
248
249
250
251
252
    _row_parallel_weights = ["c_proj.weight"]

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
253
        load_format: str = "auto",
Jasmond L's avatar
Jasmond L committed
254
        revision: Optional[str] = None,
Qing's avatar
Qing committed
255
256
257
258
259
260
    ):
        tp_world_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()

        for name, loaded_weight in hf_model_weights_iterator(
Jasmond L's avatar
Jasmond L committed
261
                model_name_or_path, cache_dir, load_format, revision):
Qing's avatar
Qing committed
262
263
264
            if "rotary_emb.inv_freq" in name:
                continue

265
266
            loaded_weight = convert_pyslice_to_tensor(loaded_weight)

Qing's avatar
Qing committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
            if "c_attn" in name:
                total_num_heads = self.config.num_attention_heads
                hidden_size = self.config.hidden_size
                head_size = hidden_size // total_num_heads
                num_heads = total_num_heads // tp_world_size
                head_start = tp_rank * num_heads
                head_end = (tp_rank + 1) * num_heads

                if "weight" in name:
                    loaded_weight = loaded_weight.view(3, total_num_heads,
                                                       head_size, hidden_size)
                    loaded_weight = loaded_weight[:, head_start:head_end, :, :]
                    loaded_weight = loaded_weight.reshape(-1, hidden_size)
                elif "bias" in name:
                    loaded_weight = loaded_weight.view(3, total_num_heads,
                                                       head_size)
                    loaded_weight = loaded_weight[:, head_start:head_end, :]
                    loaded_weight = loaded_weight.reshape(-1)

            is_gate_up_weight = False
            for stride_id, weight_name in enumerate(["w2", "w1"]):
                if weight_name not in name:
                    continue
                param = state_dict[name.replace(weight_name, "gate_up_proj")]
                shard_size = param.shape[0] // 2
                loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
                                              (tp_rank + 1)]
                param_slice = param.data[shard_size * stride_id:shard_size *
                                         (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_gate_up_weight = True
                break
            if is_gate_up_weight:
                continue

            param = state_dict[name]
JFDuan's avatar
JFDuan committed
304
305
306
307
308
309

            if "wte" in name or "lm_head" in name:
                load_padded_tensor_parallel_vocab(param, loaded_weight,
                                                  tp_rank)
                continue

Qing's avatar
Qing committed
310
311
312
313
314
315
316
317
            load_tensor_parallel_weights(
                param,
                loaded_weight,
                name,
                self._column_parallel_weights,
                self._row_parallel_weights,
                tp_rank,
            )