gpt_bigcode.py 14.6 KB
Newer Older
1
# coding=utf-8
2
3
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2023 The vLLM team.
# Copyright 2023 CTranslate2, and Michael Feil
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPTBigCode model compatible with HuggingFace weights.

The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import Dict, List, Optional, Tuple

import torch
from torch import nn
from transformers import GPTBigCodeConfig

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
                                              load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
from vllm.sequence import SequenceOutputs

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GPTBigCodeAttention(nn.Module):

    def __init__(self, config: GPTBigCodeConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        total_num_heads = config.num_attention_heads
52
53
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
54
55
56
        assert total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = self.hidden_size // total_num_heads
57
        self.scale = self.head_dim**-0.5
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        self.multi_query = config.multi_query
        if self.multi_query:
            self.num_kv_heads = 1
            self.kv_dim = self.head_dim
            self.c_attn_q = ColumnParallelLinear(self.hidden_size,
                                                 self.hidden_size,
                                                 bias=True,
                                                 gather_output=False,
                                                 perform_initialization=False)
            self.c_attn_kv = nn.Linear(self.hidden_size,
                                       2 * self.kv_dim,
                                       bias=True)
        else:
            self.num_kv_heads = self.num_heads
            self.kv_dim = self.num_kv_heads * self.head_dim
            self.c_attn = ColumnParallelLinear(self.hidden_size,
                                               self.hidden_size +
                                               2 * self.kv_dim,
                                               bias=True,
                                               gather_output=False,
                                               perform_initialization=False)

81
82
83
84
        self.c_proj = RowParallelLinear(self.hidden_size,
                                        self.hidden_size,
                                        bias=True,
                                        input_is_parallel=True,
85
                                        perform_initialization=False)
86
87
        self.attn = PagedAttention(self.num_heads,
                                   self.head_dim,
Zhuohan Li's avatar
Zhuohan Li committed
88
89
                                   scale=self.scale,
                                   num_kv_heads=self.num_kv_heads)
90
91
92
93
94
95
96
97

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
98
99
100
101
102
103
104
105
        if self.multi_query:
            q, _ = self.c_attn_q(hidden_states)
            kv = self.c_attn_kv(hidden_states)
            k, v = kv.split([self.kv_dim, self.kv_dim], dim=-1)
        else:
            qkv, _ = self.c_attn(hidden_states)
            q, k, v = qkv.split([self.hidden_size, self.kv_dim, self.kv_dim],
                                dim=-1)
106
        key_cache, value_cache = kv_cache
107
108
        attn_output = self.attn(q, k, v, key_cache, value_cache,
                                input_metadata, cache_event)
109
110
111
112
113
114
115
116
117
118
119
120
121
        attn_output, _ = self.c_proj(attn_output)
        return attn_output


class GPTBigMLP(nn.Module):

    def __init__(
        self,
        intermediate_size: int,
        config: GPTBigCodeConfig,
    ):
        super().__init__()
        hidden_size = config.hidden_size
122
123
124
125
        self.c_fc = ColumnParallelLinear(hidden_size,
                                         intermediate_size,
                                         bias=True,
                                         gather_output=False,
126
                                         perform_initialization=False)
127
128
129
130
        self.c_proj = RowParallelLinear(intermediate_size,
                                        hidden_size,
                                        bias=True,
                                        input_is_parallel=True,
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                                        perform_initialization=False)
        self.act = get_act_fn(config.activation_function)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.c_proj(hidden_states)
        return hidden_states


class GPTBigCodeBlock(nn.Module):

    def __init__(self, config: GPTBigCodeConfig):
        super().__init__()
        hidden_size = config.hidden_size
146
147
        inner_dim = (config.n_inner if config.n_inner is not None else 4 *
                     hidden_size)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = GPTBigCodeAttention(config)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = GPTBigMLP(inner_dim, config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_output = self.attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states
        return hidden_states


class GPTBigCodeModel(nn.Module):

    def __init__(self, config: GPTBigCodeConfig):
        super().__init__()
        self.config = config
185
        assert not config.add_cross_attention
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        self.embed_dim = config.hidden_size

        # Optimization: While the vocab size of GPT-2 is 50257, we extend it
        # to 50304 in order to make it divisible by 64.
        # This improves performance since GPUs are faster if the dimension
        # is divisible by 64. In addition, it allows us to shard the embedding
        # layer across 2, 4, 8, or more GPUs.
        vocab_size = ((config.vocab_size + 63) // 64) * 64
        self.wte = VocabParallelEmbedding(vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
        self.h = nn.ModuleList(
            [GPTBigCodeBlock(config) for _ in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        for i in range(len(self.h)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.h[i]
219
220
            hidden_states = layer(hidden_states, kv_caches[i], input_metadata,
                                  cache_event)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class GPTBigCodeForCausalLM(nn.Module):

    def __init__(self, config: GPTBigCodeConfig):
        super().__init__()
        self.config = config
        self.transformer = GPTBigCodeModel(config)
        # TODO(zhuohan): create a new weight after implementing pipeline
        #                parallelism
        self.lm_head_weight = self.transformer.wte.weight
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> Dict[int, SequenceOutputs]:
245
246
247
248
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata, cache_events)
        next_tokens = self.sampler(self.lm_head_weight, hidden_states,
                                   input_metadata)
249
250
251
252
253
        return next_tokens

    _column_parallel_weights = ["wte.weight", "c_fc.weight", "c_fc.bias"]
    _row_parallel_weights = ["c_proj.weight"]

254
255
    def load_weights(self,
                     model_name_or_path: str,
256
257
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
258
259
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
260
261
262
263
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()

        for name, loaded_weight in hf_model_weights_iterator(
264
                model_name_or_path, cache_dir, use_np_cache):
265
266
267
268
269
270
271
272
273
            if "lm_head.weight" in name:
                # GPT-2 ties the weights of the embedding layer and the final
                # linear layer.
                continue
            if ".attn.bias" in name:
                # Skip attention mask.
                # NOTE: "c_attn.bias" should not be skipped.
                continue

274
275
276
            if not name.startswith("transformer."):
                name = "transformer." + name

277
278
            # For the fused QKV linear layer, manually shard the weights.
            if "c_attn" in name:
279
280
281
282
                # GPT-2's fused QKV has the shape of
                # [3 * num_heads * head_size, hidden_size].
                # When tensor parallelism is used, we shard the weights along
                # the head dimension.
283
                total_num_heads = self.config.num_attention_heads
Zhuohan Li's avatar
Zhuohan Li committed
284
285
                total_num_kv_heads = (1 if self.config.multi_query else
                                      total_num_heads)
286
287
                hidden_size = self.config.hidden_size
                head_size = hidden_size // total_num_heads
Zhuohan Li's avatar
Zhuohan Li committed
288
                total_kv_size = head_size * total_num_kv_heads
289
290
291
292
                num_heads = total_num_heads // tensor_model_parallel_world_size
                head_start = tensor_model_parallel_rank * num_heads
                head_end = (tensor_model_parallel_rank + 1) * num_heads

Zhuohan Li's avatar
Zhuohan Li committed
293
294
295
296
297
298
299
300
301
                wq, wk, wv = torch.split(
                    loaded_weight, [hidden_size, total_kv_size, total_kv_size],
                    dim=0)

                wq = wq[head_size * head_start:head_size * head_end]
                if not self.config.multi_query:
                    # Split the heads when using normal multi-head attention
                    wk = wk[head_size * head_start:head_size * head_end]
                    wv = wv[head_size * head_start:head_size * head_end]
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
                    loaded_weight = torch.cat([wq, wk, wv], dim=0)
                else:
                    # For multi-query attention, we split the query
                    # but replicate the key and value.
                    loaded_weight_q = wq
                    loaded_weight_kv = torch.cat([wk, wv], dim=0)
                    q_weight_name = name.replace("c_attn", "c_attn_q")
                    kv_weight_name = name.replace("c_attn", "c_attn_kv")
                    load_tensor_parallel_weights(state_dict[q_weight_name],
                                                 loaded_weight_q,
                                                 q_weight_name,
                                                 self._column_parallel_weights,
                                                 self._row_parallel_weights,
                                                 tensor_model_parallel_rank)
                    load_tensor_parallel_weights(state_dict[kv_weight_name],
                                                 loaded_weight_kv,
                                                 kv_weight_name,
                                                 self._column_parallel_weights,
                                                 self._row_parallel_weights,
                                                 tensor_model_parallel_rank)
                    continue

            param = state_dict[name]
Zhuohan Li's avatar
Zhuohan Li committed
325

326
327
328
329
330
331
332
333
334
            if name == "transformer.wte.weight":
                # Consider padding in the vocab size.
                padded_vocab_size = param.shape[
                    0] * tensor_model_parallel_world_size
                num_extra_rows = padded_vocab_size - self.config.vocab_size
                extra_rows = torch.empty(num_extra_rows,
                                         loaded_weight.shape[1])
                extra_rows = extra_rows.to(loaded_weight)
                loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
335

336
337
338
339
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
                                         self._row_parallel_weights,
                                         tensor_model_parallel_rank)