api_server.py 21 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
3
4
5
6
# Adapted from https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/serve/openai_api_server.py

import argparse
from http import HTTPStatus
import json
import time
7
from typing import AsyncGenerator, Dict, List, Optional, Union, Any
Zhuohan Li's avatar
Zhuohan Li committed
8
9

import fastapi
10
from fastapi import BackgroundTasks, Request
Zhuohan Li's avatar
Zhuohan Li committed
11
12
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
Zhuohan Li's avatar
Zhuohan Li committed
13
from fastapi.responses import JSONResponse, StreamingResponse
Zhuohan Li's avatar
Zhuohan Li committed
14
15
import uvicorn

Woosuk Kwon's avatar
Woosuk Kwon committed
16
17
18
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
Zhuohan Li's avatar
Zhuohan Li committed
19
    CompletionRequest, CompletionResponse, CompletionResponseChoice,
20
21
22
23
24
25
    CompletionResponseStreamChoice, CompletionStreamResponse,
    ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice, ChatCompletionStreamResponse,
    ChatMessage, DeltaMessage, ErrorResponse, LogProbs,
    ModelCard, ModelList, ModelPermission, UsageInfo)
from fastchat.conversation import Conversation, SeparatorStyle, get_conv_template
Woosuk Kwon's avatar
Woosuk Kwon committed
26
27
28
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
29
from vllm.transformers_utils.tokenizer import get_tokenizer
Woosuk Kwon's avatar
Woosuk Kwon committed
30
from vllm.utils import random_uuid
Zhuohan Li's avatar
Zhuohan Li committed
31

32
TIMEOUT_KEEP_ALIVE = 5 # seconds
Zhuohan Li's avatar
Zhuohan Li committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

logger = init_logger(__name__)
served_model = None
app = fastapi.FastAPI()


def create_error_response(status_code: HTTPStatus,
                          message: str) -> JSONResponse:
    return JSONResponse(
        ErrorResponse(message=message, type="invalid_request_error").dict(),
        status_code=status_code.value
    )


@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request, exc):
    return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))


async def check_model(request) -> Optional[JSONResponse]:
    if request.model == served_model:
        return
    ret = create_error_response(
        HTTPStatus.NOT_FOUND,
        f"The model `{request.model}` does not exist.",
    )
    return ret


62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
async def get_gen_prompt(request) -> str:
    conv = get_conv_template(request.model)
    conv = Conversation(
        name=conv.name,
        system=conv.system,
        roles=conv.roles,
        messages=list(conv.messages),  # prevent in-place modification
        offset=conv.offset,
        sep_style=SeparatorStyle(conv.sep_style),
        sep=conv.sep,
        sep2=conv.sep2,
        stop_str=conv.stop_str,
        stop_token_ids=conv.stop_token_ids,
    )

    if isinstance(request.messages, str):
        prompt = request.messages
    else:
        for message in request.messages:
            msg_role = message["role"]
            if msg_role == "system":
                conv.system = message["content"]
            elif msg_role == "user":
                conv.append_message(conv.roles[0], message["content"])
            elif msg_role == "assistant":
                conv.append_message(conv.roles[1], message["content"])
            else:
                raise ValueError(f"Unknown role: {msg_role}")

        # Add a blank message for the assistant.
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

    return prompt


async def check_length(request, prompt, engine):
    if hasattr(engine.engine.model_config.hf_config, "max_sequence_length"):
        context_len = engine.engine.model_config.hf_config.max_sequence_length
    elif hasattr(engine.engine.model_config.hf_config, "seq_length"):
        context_len = engine.engine.model_config.hf_config.seq_length
    elif hasattr(engine.engine.model_config.hf_config, "max_position_embeddings"):
        context_len = engine.engine.model_config.hf_config.max_position_embeddings
    elif hasattr(engine.engine.model_config.hf_config, "seq_length"):
        context_len = engine.engine.model_config.hf_config.seq_length
    else:
        context_len = 2048

    input_ids = tokenizer(prompt).input_ids
    token_num = len(input_ids)

    if token_num + request.max_tokens > context_len:
        return create_error_response(
            HTTPStatus.BAD_REQUEST,
            f"This model's maximum context length is {context_len} tokens. "
            f"However, you requested {request.max_tokens + token_num} tokens "
            f"({token_num} in the messages, "
            f"{request.max_tokens} in the completion). "
            f"Please reduce the length of the messages or completion.",
        )
    else:
        return None


Zhuohan Li's avatar
Zhuohan Li committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
@app.get("/v1/models")
async def show_available_models():
    """Show available models. Right now we only have one model."""
    model_cards = [ModelCard(id=served_model, root=served_model,
                             permission=[ModelPermission()])]
    return ModelList(data=model_cards)


def create_logprobs(token_ids: List[int],
                    id_logprobs: List[Dict[int, float]],
                    initial_text_offset: int = 0) -> LogProbs:
    """Create OpenAI-style logprobs."""
    logprobs = LogProbs()
    last_token_len = 0
    for token_id, id_logprob in zip(token_ids, id_logprobs):
        token = tokenizer.convert_ids_to_tokens(token_id)
        logprobs.tokens.append(token)
        logprobs.token_logprobs.append(id_logprob[token_id])
        if len(logprobs.text_offset) == 0:
            logprobs.text_offset.append(initial_text_offset)
        else:
            logprobs.text_offset.append(logprobs.text_offset[-1] + last_token_len)
        last_token_len = len(token)

        logprobs.top_logprobs.append(
            {tokenizer.convert_ids_to_tokens(i): p
             for i, p in id_logprob.items()})
    return logprobs


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
@app.post("/v1/chat/completions")
async def create_chat_completion(raw_request: Request):
    """Completion API similar to OpenAI's API.

    See  https://platform.openai.com/docs/api-reference/chat/create
    for the API specification. This API mimics the OpenAI ChatCompletion API.

    NOTE: Currently we do not support the following features:
        - function_call (Users should implement this by themselves)
        - logit_bias (to be supported by vLLM engine)
    """
    request = ChatCompletionRequest(**await raw_request.json())
    logger.info(f"Received chat completion request: {request}")

    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    if request.logit_bias is not None:
        # TODO: support logit_bias in vLLM engine.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "logit_bias is not currently supported")

    prompt = await get_gen_prompt(request)
    error_check_ret = await check_length(request, prompt, engine)
    if error_check_ret is not None:
        return error_check_ret

    model_name = request.model
    request_id = f"cmpl-{random_uuid()}"
    created_time = int(time.time())
    try:
        sampling_params = SamplingParams(
            n=request.n,
            presence_penalty=request.presence_penalty,
            frequency_penalty=request.frequency_penalty,
            temperature=request.temperature,
            top_p=request.top_p,
            stop=request.stop,
            max_tokens=request.max_tokens,
            best_of=request.best_of,
            top_k=request.top_k,
            ignore_eos=request.ignore_eos,
            use_beam_search=request.use_beam_search,
        )
    except ValueError as e:
        return create_error_response(HTTPStatus.BAD_REQUEST, str(e))

    result_generator = engine.generate(prompt, sampling_params,
                                       request_id)

    async def abort_request() -> None:
        await engine.abort(request_id)

    def create_stream_response_json(index: int,
                                    text: str,
                                    finish_reason: Optional[str] = None) -> str:
        choice_data = ChatCompletionResponseStreamChoice(
            index=index,
            delta=DeltaMessage(content=text),
            finish_reason=finish_reason,
        )
        response = ChatCompletionStreamResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=[choice_data],
        )
        response_json = response.json(ensure_ascii=False)

        return response_json

    async def completion_stream_generator() -> AsyncGenerator[str, None]:
        # First chunk with role
        for i in range(request.n):
            choice_data = ChatCompletionResponseStreamChoice(
                index=i,
                delta=DeltaMessage(role="assistant"),
                finish_reason=None,
            )
            chunk = ChatCompletionStreamResponse(
                id=request_id, choices=[choice_data], model=model_name
            )
            yield f"data: {chunk.json(exclude_unset=True, ensure_ascii=False)}\n\n"

        previous_texts = [""] * request.n
        previous_num_tokens = [0] * request.n
        async for res in result_generator:
            res: RequestOutput
            for output in res.outputs:
                i = output.index
                delta_text = output.text[len(previous_texts[i]):]
                previous_texts[i] = output.text
                previous_num_tokens[i] = len(output.token_ids)
                response_json = create_stream_response_json(
                    index=i,
                    text=delta_text,
                )
                yield f"data: {response_json}\n\n"
                if output.finish_reason is not None:
                    response_json = create_stream_response_json(
                        index=i,
                        text="",
                        finish_reason=output.finish_reason,
                    )
                    yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"

    # Streaming response
    if request.stream:
        background_tasks = BackgroundTasks()
        # Abort the request if the client disconnects.
        background_tasks.add_task(abort_request)
        return StreamingResponse(completion_stream_generator(),
                                 media_type="text/event-stream",
                                 background=background_tasks)

    # Non-streaming response
    final_res: RequestOutput = None
    async for res in result_generator:
        if await raw_request.is_disconnected():
            # Abort the request if the client disconnects.
            await abort_request()
            return create_error_response(HTTPStatus.BAD_REQUEST,
                                         "Client disconnected")
        final_res = res
    assert final_res is not None
    choices = []
    for output in final_res.outputs:
        choice_data = ChatCompletionResponseChoice(
            index=output.index,
            message=ChatMessage(role="assistant", content=output.text),
            finish_reason=output.finish_reason,
        )
        choices.append(choice_data)

    num_prompt_tokens = len(final_res.prompt_token_ids)
    num_generated_tokens = sum(len(output.token_ids)
                               for output in final_res.outputs)
    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )
    response = ChatCompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
    )

    if request.stream:
        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
        response_json = response.json(ensure_ascii=False)
        async def fake_stream_generator() -> AsyncGenerator[str, None]:
            yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"
        return StreamingResponse(fake_stream_generator(),
                                 media_type="text/event-stream")

    return response


Zhuohan Li's avatar
Zhuohan Li committed
321
@app.post("/v1/completions")
322
async def create_completion(raw_request: Request):
323
324
325
326
327
328
    """Completion API similar to OpenAI's API.

    See https://platform.openai.com/docs/api-reference/completions/create
    for the API specification. This API mimics the OpenAI Completion API.

    NOTE: Currently we do not support the following features:
Woosuk Kwon's avatar
Woosuk Kwon committed
329
        - echo (since the vLLM engine does not currently support
330
331
332
          getting the logprobs of prompt tokens)
        - suffix (the language models we currently support do not support
          suffix)
Woosuk Kwon's avatar
Woosuk Kwon committed
333
        - logit_bias (to be supported by vLLM engine)
334
    """
335
    request = CompletionRequest(**await raw_request.json())
Zhuohan Li's avatar
Zhuohan Li committed
336
337
338
339
340
341
342
    logger.info(f"Received completion request: {request}")

    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    if request.echo:
Woosuk Kwon's avatar
Woosuk Kwon committed
343
        # We do not support echo since the vLLM engine does not
Zhuohan Li's avatar
Zhuohan Li committed
344
345
346
347
348
349
350
351
352
353
        # currently support getting the logprobs of prompt tokens.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "echo is not currently supported")

    if request.suffix is not None:
        # The language models we currently support do not support suffix.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                    "suffix is not currently supported")

    if request.logit_bias is not None:
Woosuk Kwon's avatar
Woosuk Kwon committed
354
        # TODO: support logit_bias in vLLM engine.
Zhuohan Li's avatar
Zhuohan Li committed
355
356
357
358
359
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "logit_bias is not currently supported")

    model_name = request.model
    request_id = f"cmpl-{random_uuid()}"
360
361
362
363
364
    if isinstance(request.prompt, list):
        assert len(request.prompt) == 1
        prompt = request.prompt[0]
    else:
        prompt = request.prompt
Zhuohan Li's avatar
Zhuohan Li committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    created_time = int(time.time())
    try:
        sampling_params = SamplingParams(
            n=request.n,
            best_of=request.best_of,
            presence_penalty=request.presence_penalty,
            frequency_penalty=request.frequency_penalty,
            temperature=request.temperature,
            top_p=request.top_p,
            top_k=request.top_k,
            stop=request.stop,
            ignore_eos=request.ignore_eos,
            max_tokens=request.max_tokens,
            logprobs=request.logprobs,
            use_beam_search=request.use_beam_search,
        )
    except ValueError as e:
        return create_error_response(HTTPStatus.BAD_REQUEST, str(e))

Zhuohan Li's avatar
Zhuohan Li committed
384
    result_generator = engine.generate(prompt, sampling_params,
385
                                       request_id)
Zhuohan Li's avatar
Zhuohan Li committed
386
387
388
389
390
391
392

    # Similar to the OpenAI API, when n != best_of, we do not stream the
    # results. In addition, we do not stream the results when use beam search.
    stream = (request.stream and
              (request.best_of is None or request.n == request.best_of) and
              not request.use_beam_search)

393
    async def abort_request() -> None:
Zhuohan Li's avatar
Zhuohan Li committed
394
        await engine.abort(request_id)
395

Zhuohan Li's avatar
Zhuohan Li committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    def create_stream_response_json(index: int,
                                    text: str,
                                    logprobs: Optional[LogProbs] = None,
                                    finish_reason: Optional[str] = None) -> str:
        choice_data = CompletionResponseStreamChoice(
            index=index,
            text=text,
            logprobs=logprobs,
            finish_reason=finish_reason,
        )
        response = CompletionStreamResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=[choice_data],
        )
        response_json = response.json(ensure_ascii=False)

        return response_json

    async def completion_stream_generator() -> AsyncGenerator[str, None]:
        previous_texts = [""] * request.n
        previous_num_tokens = [0] * request.n
        async for res in result_generator:
            res: RequestOutput
            for output in res.outputs:
                i = output.index
                delta_text = output.text[len(previous_texts[i]):]
                if request.logprobs is not None:
                    logprobs = create_logprobs(
                        output.token_ids[previous_num_tokens[i]:],
                        output.logprobs[previous_num_tokens[i]:],
                        len(previous_texts[i]))
                else:
                    logprobs = None
                previous_texts[i] = output.text
                previous_num_tokens[i] = len(output.token_ids)
                response_json = create_stream_response_json(
                    index=i,
                    text=delta_text,
                    logprobs=logprobs,
                )
                yield f"data: {response_json}\n\n"
                if output.finish_reason is not None:
                    logprobs = LogProbs() if request.logprobs is not None else None
                    response_json = create_stream_response_json(
                        index=i,
                        text="",
                        logprobs=logprobs,
                        finish_reason=output.finish_reason,
                    )
                    yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"

    # Streaming response
    if stream:
452
453
454
        background_tasks = BackgroundTasks()
        # Abort the request if the client disconnects.
        background_tasks.add_task(abort_request)
Zhuohan Li's avatar
Zhuohan Li committed
455
        return StreamingResponse(completion_stream_generator(),
456
457
                                 media_type="text/event-stream",
                                 background=background_tasks)
Zhuohan Li's avatar
Zhuohan Li committed
458
459
460
461

    # Non-streaming response
    final_res: RequestOutput = None
    async for res in result_generator:
462
463
        if await raw_request.is_disconnected():
            # Abort the request if the client disconnects.
464
            await abort_request()
465
466
            return create_error_response(HTTPStatus.BAD_REQUEST,
                                         "Client disconnected")
Zhuohan Li's avatar
Zhuohan Li committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        final_res = res
    assert final_res is not None
    choices = []
    for output in final_res.outputs:
        if request.logprobs is not None:
            logprobs = create_logprobs(output.token_ids, output.logprobs)
        else:
            logprobs = None
        choice_data = CompletionResponseChoice(
            index=output.index,
            text=output.text,
            logprobs=logprobs,
            finish_reason=output.finish_reason,
        )
        choices.append(choice_data)

    num_prompt_tokens = len(final_res.prompt_token_ids)
    num_generated_tokens = sum(len(output.token_ids)
                               for output in final_res.outputs)
    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )
    response = CompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
    )

    if request.stream:
        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
        response_json = response.json(ensure_ascii=False)
        async def fake_stream_generator() -> AsyncGenerator[str, None]:
            yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"
        return StreamingResponse(fake_stream_generator(),
                                 media_type="text/event-stream")

    return response


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
Woosuk Kwon's avatar
Woosuk Kwon committed
514
        description="vLLM OpenAI-Compatible RESTful API server."
Zhuohan Li's avatar
Zhuohan Li committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    )
    parser.add_argument("--host", type=str, default="localhost", help="host name")
    parser.add_argument("--port", type=int, default=8000, help="port number")
    parser.add_argument(
        "--allow-credentials", action="store_true", help="allow credentials"
    )
    parser.add_argument(
        "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
    )
    parser.add_argument(
        "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
    )
    parser.add_argument(
        "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
    )
    parser.add_argument("--served-model-name", type=str, default=None,
                        help="The model name used in the API. If not specified, "
                             "the model name will be the same as the "
                             "huggingface name.")
Zhuohan Li's avatar
Zhuohan Li committed
534
    parser = AsyncEngineArgs.add_cli_args(parser)
Zhuohan Li's avatar
Zhuohan Li committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    args = parser.parse_args()

    app.add_middleware(
        CORSMiddleware,
        allow_origins=args.allowed_origins,
        allow_credentials=args.allow_credentials,
        allow_methods=args.allowed_methods,
        allow_headers=args.allowed_headers,
    )

    logger.info(f"args: {args}")

    served_model = args.served_model_name or args.model

Zhuohan Li's avatar
Zhuohan Li committed
549
550
    engine_args = AsyncEngineArgs.from_cli_args(args)
    engine = AsyncLLMEngine.from_engine_args(engine_args)
Zhuohan Li's avatar
Zhuohan Li committed
551
552

    # A separate tokenizer to map token IDs to strings.
553
    tokenizer = get_tokenizer(engine_args.tokenizer, engine_args.tokenizer_mode)
Zhuohan Li's avatar
Zhuohan Li committed
554

555
556
    uvicorn.run(app, host=args.host, port=args.port, log_level="info",
                timeout_keep_alive=TIMEOUT_KEEP_ALIVE)