model_runner.py 27.7 KB
Newer Older
1
import time
2
from typing import Dict, List, Optional, Tuple, Union
3

4
import numpy as np
5
import torch
6
import torch.nn as nn
7
8
9
10

from vllm.config import ModelConfig, ParallelConfig, SchedulerConfig
from vllm.logger import init_logger
from vllm.model_executor import get_model, InputMetadata, SamplingMetadata
11
12
from vllm.model_executor.parallel_utils.communication_op import (
    broadcast, broadcast_object_list)
13
14
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
15
from vllm.utils import in_wsl
16
17
18

logger = init_logger(__name__)

19
KVCache = Tuple[torch.Tensor, torch.Tensor]
20
_PAD_SLOT_ID = -1
21
22
23
# Capture graphs for batch size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [8 * i for i in range(1, 33)]
24
25
26
27
28
29
30
31
32


class ModelRunner:

    def __init__(
        self,
        model_config: ModelConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
33
        is_driver_worker: bool = False,
34
35
36
37
    ):
        self.model_config = model_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
38
        self.is_driver_worker = is_driver_worker
39

Woosuk Kwon's avatar
Woosuk Kwon committed
40
41
42
43
        # model_config can be None in tests/samplers/test_sampler.py.
        # FIXME(woosuk): This is a hack to make the tests work. Refactor this.
        self.sliding_window = (model_config.get_sliding_window()
                               if model_config is not None else None)
44
45
46
        self.model = None
        self.block_size = None  # Set after initial profiling.

47
48
49
50
51
52
53
54
55
56
57
58
59
        self.graph_runners: Dict[int, CUDAGraphRunner] = {}
        self.graph_memory_pool = None  # Set during graph capture.

        self.max_context_len_to_capture = (
            self.model_config.max_context_len_to_capture
            if self.model_config is not None else 0)
        # When using CUDA graph, the input block tables must be padded to
        # max_context_len_to_capture. However, creating the block table in
        # Python can be expensive. To optimize this, we cache the block table
        # in numpy and only copy the actual input content at every iteration.
        # The shape of the cached block table will be
        # (max batch size to capture, max context len to capture / block size).
        self.graph_block_tables = None  # Set after initial profiling.
60
61
        # cache in_wsl result
        self.in_wsl = in_wsl()
62

63
64
65
66
67
68
    def load_model(self) -> None:
        self.model = get_model(self.model_config)

    def set_block_size(self, block_size: int) -> None:
        self.block_size = block_size

69
70
71
72
73
        max_num_blocks = (self.max_context_len_to_capture + block_size -
                          1) // block_size
        self.graph_block_tables = np.zeros(
            (max(_BATCH_SIZES_TO_CAPTURE), max_num_blocks), dtype=np.int32)

74
75
76
    def _prepare_prompt(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
77
    ) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, List[int]]:
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        assert len(seq_group_metadata_list) > 0
        input_tokens: List[List[int]] = []
        input_positions: List[List[int]] = []
        slot_mapping: List[List[int]] = []

        prompt_lens: List[int] = []
        for seq_group_metadata in seq_group_metadata_list:
            assert seq_group_metadata.is_prompt
            seq_ids = list(seq_group_metadata.seq_data.keys())
            assert len(seq_ids) == 1
            seq_id = seq_ids[0]

            seq_data = seq_group_metadata.seq_data[seq_id]
            prompt_tokens = seq_data.get_token_ids()
            prompt_len = len(prompt_tokens)
            prompt_lens.append(prompt_len)

            input_tokens.append(prompt_tokens)
            # NOTE(woosuk): Here we assume that the first token in the prompt
            # is always the first token in the sequence.
            input_positions.append(list(range(prompt_len)))

            if seq_group_metadata.block_tables is None:
                # During memory profiling, the block tables are not initialized
                # yet. In this case, we just use a dummy slot mapping.
                slot_mapping.append([_PAD_SLOT_ID] * prompt_len)
                continue

            # Compute the slot mapping.
            slot_mapping.append([])
            block_table = seq_group_metadata.block_tables[seq_id]
            # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
            # where start_idx is max(0, prompt_len - sliding_window).
            # For example, if the prompt len is 10, sliding window is 8, and
            # block size is 4, the first two tokens are masked and the slot
            # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
            start_idx = 0
            if self.sliding_window is not None:
                start_idx = max(0, prompt_len - self.sliding_window)
            for i in range(prompt_len):
                if i < start_idx:
                    slot_mapping[-1].append(_PAD_SLOT_ID)
                    continue

                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping[-1].append(slot)

        max_prompt_len = max(prompt_lens)
        input_tokens = _make_tensor_with_pad(input_tokens,
                                             max_prompt_len,
                                             pad=0,
                                             dtype=torch.long)
        input_positions = _make_tensor_with_pad(input_positions,
                                                max_prompt_len,
                                                pad=0,
                                                dtype=torch.long)
        slot_mapping = _make_tensor_with_pad(slot_mapping,
                                             max_prompt_len,
                                             pad=_PAD_SLOT_ID,
                                             dtype=torch.long)

        input_metadata = InputMetadata(
142
            is_prompt=True,
143
144
145
146
            slot_mapping=slot_mapping,
            max_context_len=None,
            context_lens=None,
            block_tables=None,
147
            use_cuda_graph=False,
148
        )
149
        return input_tokens, input_positions, input_metadata, prompt_lens
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    def _prepare_decode(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata]:
        assert len(seq_group_metadata_list) > 0
        input_tokens: List[List[int]] = []
        input_positions: List[List[int]] = []
        slot_mapping: List[List[int]] = []
        context_lens: List[int] = []
        block_tables: List[List[int]] = []

        for seq_group_metadata in seq_group_metadata_list:
            assert not seq_group_metadata.is_prompt

            seq_ids = list(seq_group_metadata.seq_data.keys())
            for seq_id in seq_ids:
                seq_data = seq_group_metadata.seq_data[seq_id]
                generation_token = seq_data.get_last_token_id()
                input_tokens.append([generation_token])

171
172
                seq_len = seq_data.get_len()
                position = seq_len - 1
173
174
                input_positions.append([position])

175
176
177
178
                context_len = seq_len if self.sliding_window is None else min(
                    seq_len, self.sliding_window)
                context_lens.append(context_len)

179
180
181
182
183
184
185
186
187
188
189
190
                block_table = seq_group_metadata.block_tables[seq_id]
                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append([slot])

                if self.sliding_window is not None:
                    sliding_window_blocks = (self.sliding_window //
                                             self.block_size)
                    block_table = block_table[-sliding_window_blocks:]
                block_tables.append(block_table)

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        batch_size = len(input_tokens)
        max_context_len = max(context_lens)
        use_captured_graph = (
            not self.model_config.enforce_eager
            and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
            and max_context_len <= self.max_context_len_to_capture)
        if use_captured_graph:
            # Pad the input tokens, positions, and slot mapping to match the
            # batch size of the captured graph.
            graph_batch_size = _get_graph_batch_size(batch_size)
            assert graph_batch_size >= batch_size
            for _ in range(graph_batch_size - batch_size):
                input_tokens.append([])
                input_positions.append([])
                slot_mapping.append([])
                context_lens.append(1)
                block_tables.append([])
            batch_size = graph_batch_size

210
211
212
        input_tokens = _make_tensor_with_pad(input_tokens,
                                             max_len=1,
                                             pad=0,
213
                                             dtype=torch.long,
214
                                             device="cuda")
215
216
217
        input_positions = _make_tensor_with_pad(input_positions,
                                                max_len=1,
                                                pad=0,
218
                                                dtype=torch.long,
219
                                                device="cuda")
220
221
222
        slot_mapping = _make_tensor_with_pad(slot_mapping,
                                             max_len=1,
                                             pad=_PAD_SLOT_ID,
223
                                             dtype=torch.long,
224
                                             device="cuda")
225
226
        context_lens = torch.tensor(context_lens,
                                    dtype=torch.int,
227
                                    device="cuda")
228
229
230
231
232
233
234
235

        if use_captured_graph:
            # The shape of graph_block_tables is
            # [max batch size, max context len // block size].
            input_block_tables = self.graph_block_tables[:batch_size]
            for i, block_table in enumerate(block_tables):
                if block_table:
                    input_block_tables[i, :len(block_table)] = block_table
236
            block_tables = torch.tensor(input_block_tables, device="cuda")
237
238
239
240
241
242
        else:
            block_tables = _make_tensor_with_pad(
                block_tables,
                max_len=max_context_len,
                pad=0,
                dtype=torch.int,
243
                device="cuda",
244
            )
245
246

        input_metadata = InputMetadata(
247
            is_prompt=False,
248
249
250
251
            slot_mapping=slot_mapping,
            max_context_len=max_context_len,
            context_lens=context_lens,
            block_tables=block_tables,
252
            use_cuda_graph=use_captured_graph,
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        )
        return input_tokens, input_positions, input_metadata

    def _prepare_sample(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        prompt_lens: List[int],
    ) -> SamplingMetadata:
        seq_groups: List[Tuple[List[int], SamplingParams]] = []
        selected_token_indices: List[int] = []
        selected_token_start_idx = 0
        categorized_sample_indices = {t: [] for t in SamplingType}
        categorized_sample_indices_start_idx = 0

        max_prompt_len = max(prompt_lens) if prompt_lens else 1
        for i, seq_group_metadata in enumerate(seq_group_metadata_list):
            seq_ids = list(seq_group_metadata.seq_data.keys())
            sampling_params = seq_group_metadata.sampling_params
            seq_groups.append((seq_ids, sampling_params))

            if seq_group_metadata.is_prompt:
                assert len(seq_ids) == 1
                prompt_len = prompt_lens[i]
                if sampling_params.prompt_logprobs is not None:
                    # NOTE: prompt token positions do not need sample, skip
                    categorized_sample_indices_start_idx += prompt_len - 1

                categorized_sample_indices[
                    sampling_params.sampling_type].append(
                        categorized_sample_indices_start_idx)
                categorized_sample_indices_start_idx += 1

                if sampling_params.prompt_logprobs is not None:
                    selected_token_indices.extend(
                        range(selected_token_start_idx,
                              selected_token_start_idx + prompt_len - 1))
                selected_token_indices.append(selected_token_start_idx +
                                              prompt_len - 1)
                selected_token_start_idx += max_prompt_len
            else:
                num_seqs = len(seq_ids)
                selected_token_indices.extend(
                    range(selected_token_start_idx,
                          selected_token_start_idx + num_seqs))
                selected_token_start_idx += num_seqs

                categorized_sample_indices[
                    sampling_params.sampling_type].extend(
                        range(categorized_sample_indices_start_idx,
                              categorized_sample_indices_start_idx + num_seqs))
                categorized_sample_indices_start_idx += num_seqs

305
306
307
        selected_token_indices = _async_h2d(selected_token_indices,
                                            dtype=torch.long,
                                            pin_memory=not self.in_wsl)
308
        categorized_sample_indices = {
309
            t: _async_h2d(seq_ids, dtype=torch.int, pin_memory=not self.in_wsl)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            for t, seq_ids in categorized_sample_indices.items()
        }

        seq_data: Dict[int, SequenceData] = {}
        for seq_group_metadata in seq_group_metadata_list:
            seq_data.update(seq_group_metadata.seq_data)

        sampling_metadata = SamplingMetadata(
            seq_groups=seq_groups,
            seq_data=seq_data,
            prompt_lens=prompt_lens,
            selected_token_indices=selected_token_indices,
            categorized_sample_indices=categorized_sample_indices,
        )
        return sampling_metadata

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    def prepare_input_tensors(
        self,
        seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
    ) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, SamplingMetadata]:
        if self.is_driver_worker:
            # NOTE: We assume that all sequences in the group are all prompts or
            # all decodes.
            is_prompt = seq_group_metadata_list[0].is_prompt
            # Prepare input tensors.
            if is_prompt:
                (input_tokens, input_positions, input_metadata,
                 prompt_lens) = self._prepare_prompt(seq_group_metadata_list)
            else:
                (input_tokens, input_positions, input_metadata
                 ) = self._prepare_decode(seq_group_metadata_list)
                prompt_lens = []
            sampling_metadata = self._prepare_sample(seq_group_metadata_list,
                                                     prompt_lens)

            def get_size_or_none(x: Optional[torch.Tensor]):
                return x.size() if x is not None else None

            # Broadcast the input data. For input tensors, we first broadcast
            # its shape and then broadcast the tensor to avoid high
            # serialization cost.
            py_data = {
                "input_tokens_size":
                input_tokens.size(),
                "input_positions_size":
                input_positions.size(),
                "is_prompt":
                input_metadata.is_prompt,
                "slot_mapping_size":
                get_size_or_none(input_metadata.slot_mapping),
                "max_context_len":
                input_metadata.max_context_len,
                "context_lens_size":
                get_size_or_none(input_metadata.context_lens),
                "block_tables_size":
                get_size_or_none(input_metadata.block_tables),
                "use_cuda_graph":
                input_metadata.use_cuda_graph,
                "selected_token_indices_size":
                sampling_metadata.selected_token_indices.size(),
            }
            broadcast_object_list([py_data], src=0)
            # TODO(zhuohan): Combine the broadcasts or set async_op=True.
            broadcast(input_tokens, src=0)
            broadcast(input_positions, src=0)
            if input_metadata.slot_mapping is not None:
                broadcast(input_metadata.slot_mapping, src=0)
            if input_metadata.context_lens is not None:
                broadcast(input_metadata.context_lens, src=0)
            if input_metadata.block_tables is not None:
                broadcast(input_metadata.block_tables, src=0)
            broadcast(sampling_metadata.selected_token_indices, src=0)
        else:
            receving_list = [None]
            broadcast_object_list(receving_list, src=0)
            py_data = receving_list[0]
            input_tokens = torch.empty(*py_data["input_tokens_size"],
                                       dtype=torch.long,
                                       device="cuda")
            broadcast(input_tokens, src=0)
            input_positions = torch.empty(*py_data["input_positions_size"],
                                          dtype=torch.long,
                                          device="cuda")
            broadcast(input_positions, src=0)
            if py_data["slot_mapping_size"] is not None:
                slot_mapping = torch.empty(*py_data["slot_mapping_size"],
                                           dtype=torch.long,
                                           device="cuda")
                broadcast(slot_mapping, src=0)
            else:
                slot_mapping = None
            if py_data["context_lens_size"] is not None:
                context_lens = torch.empty(*py_data["context_lens_size"],
                                           dtype=torch.int,
                                           device="cuda")
                broadcast(context_lens, src=0)
            else:
                context_lens = None
            if py_data["block_tables_size"] is not None:
                block_tables = torch.empty(*py_data["block_tables_size"],
                                           dtype=torch.int,
                                           device="cuda")
                broadcast(block_tables, src=0)
            else:
                block_tables = None
            selected_token_indices = torch.empty(
                *py_data["selected_token_indices_size"],
                dtype=torch.long,
                device="cuda")
            broadcast(selected_token_indices, src=0)
            input_metadata = InputMetadata(
                is_prompt=py_data["is_prompt"],
                slot_mapping=slot_mapping,
                max_context_len=py_data["max_context_len"],
                context_lens=context_lens,
                block_tables=block_tables,
                use_cuda_graph=py_data["use_cuda_graph"],
            )
            sampling_metadata = SamplingMetadata(
                seq_groups=None,
                seq_data=None,
                prompt_lens=None,
                selected_token_indices=selected_token_indices,
                categorized_sample_indices=None,
                perform_sampling=False,
            )

        return input_tokens, input_positions, input_metadata, sampling_metadata

439
440
441
    @torch.inference_mode()
    def execute_model(
        self,
442
        seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
443
        kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
444
445
446
    ) -> Optional[SamplerOutput]:
        input_tokens, input_positions, input_metadata, sampling_metadata = (
            self.prepare_input_tensors(seq_group_metadata_list))
447
        # Execute the model.
448
449
450
451
452
453
        if input_metadata.use_cuda_graph:
            graph_batch_size = input_tokens.shape[0]
            model_executable = self.graph_runners[graph_batch_size]
        else:
            model_executable = self.model
        hidden_states = model_executable(
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
            input_ids=input_tokens,
            positions=input_positions,
            kv_caches=kv_caches,
            input_metadata=input_metadata,
        )

        # Sample the next token.
        output = self.model.sample(
            hidden_states=hidden_states,
            sampling_metadata=sampling_metadata,
        )
        return output

    @torch.inference_mode()
    def profile_run(self) -> None:
        # Enable top-k sampling to reflect the accurate memory usage.
        vocab_size = self.model_config.get_vocab_size()
        sampling_params = SamplingParams(top_p=0.99, top_k=vocab_size - 1)
        max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
        max_num_seqs = self.scheduler_config.max_num_seqs

        # Profile memory usage with max_num_sequences sequences and the total
        # number of tokens equal to max_num_batched_tokens.
        seqs: List[SequenceGroupMetadata] = []
        for group_id in range(max_num_seqs):
            seq_len = (max_num_batched_tokens // max_num_seqs +
                       (group_id < max_num_batched_tokens % max_num_seqs))
            seq_data = SequenceData([0] * seq_len)
            seq = SequenceGroupMetadata(
                request_id=str(group_id),
                is_prompt=True,
                seq_data={group_id: seq_data},
                sampling_params=sampling_params,
                block_tables=None,
            )
            seqs.append(seq)

        # Run the model with the dummy inputs.
        num_layers = self.model_config.get_num_layers(self.parallel_config)
        kv_caches = [(None, None)] * num_layers
        self.execute_model(seqs, kv_caches)
495
        torch.cuda.synchronize()
496
497
        return

498
499
500
501
502
503
504
    @torch.inference_mode()
    def capture_model(self, kv_caches: List[KVCache]) -> None:
        assert not self.model_config.enforce_eager
        logger.info("Capturing the model for CUDA graphs. This may lead to "
                    "unexpected consequences if the model is not static. To "
                    "run the model in eager mode, set 'enforce_eager=True' or "
                    "use '--enforce-eager' in the CLI.")
505
506
507
        logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. "
                    "If you are running out of memory, consider decreasing "
                    "`gpu_memory_utilization` or enforcing eager mode.")
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        start_time = time.perf_counter()

        # Prepare dummy inputs. These will be reused for all batch sizes.
        max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
        input_tokens = torch.zeros(max_batch_size, 1, dtype=torch.long).cuda()
        input_positions = torch.zeros(max_batch_size, 1,
                                      dtype=torch.long).cuda()
        slot_mapping = torch.empty(max_batch_size, 1, dtype=torch.long).cuda()
        slot_mapping.fill_(_PAD_SLOT_ID)
        context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
        block_tables = torch.from_numpy(self.graph_block_tables).cuda()

        # NOTE: Capturing the largest batch size first may help reduce the
        # memory usage of CUDA graph.
        for batch_size in reversed(_BATCH_SIZES_TO_CAPTURE):
            # Create dummy input_metadata.
            input_metadata = InputMetadata(
525
                is_prompt=False,
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
                slot_mapping=slot_mapping[:batch_size],
                max_context_len=self.max_context_len_to_capture,
                context_lens=context_lens[:batch_size],
                block_tables=block_tables[:batch_size],
                use_cuda_graph=True,
            )

            graph_runner = CUDAGraphRunner(self.model)
            graph_runner.capture(
                input_tokens[:batch_size],
                input_positions[:batch_size],
                kv_caches,
                input_metadata,
                memory_pool=self.graph_memory_pool,
            )
            self.graph_memory_pool = graph_runner.graph.pool()
            self.graph_runners[batch_size] = graph_runner

        end_time = time.perf_counter()
        elapsed_time = end_time - start_time
        # This usually takes < 10 seconds.
        logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.")


class CUDAGraphRunner:

    def __init__(self, model: nn.Module):
        self.model = model
        self.graph = None
        self.input_buffers: Dict[str, torch.Tensor] = {}
        self.output_buffers: Dict[str, torch.Tensor] = {}

    def capture(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        memory_pool,
    ) -> None:
        assert self.graph is None
        # Run the model once without capturing the graph.
        # This is to make sure that the captured graph does not include the
        # kernel launches for initial benchmarking (e.g., Triton autotune).
570
571
572
573
574
575
576
577
578
579
580
581
        self.model(
            input_ids,
            positions,
            kv_caches,
            input_metadata,
        )
        torch.cuda.synchronize()

        # Capture the graph.
        self.graph = torch.cuda.CUDAGraph()
        with torch.cuda.graph(self.graph, pool=memory_pool):
            hidden_states = self.model(
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
                input_ids,
                positions,
                kv_caches,
                input_metadata,
            )
        torch.cuda.synchronize()

        # Save the input and output buffers.
        self.input_buffers = {
            "input_ids": input_ids,
            "positions": positions,
            "kv_caches": kv_caches,
            "slot_mapping": input_metadata.slot_mapping,
            "context_lens": input_metadata.context_lens,
            "block_tables": input_metadata.block_tables,
        }
        self.output_buffers = {"hidden_states": hidden_states}
        return

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        # KV caches are fixed tensors, so we don't need to copy them.
        del kv_caches

        # Copy the input tensors to the input buffers.
612
613
614
615
616
617
618
619
        self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
        self.input_buffers["positions"].copy_(positions, non_blocking=True)
        self.input_buffers["slot_mapping"].copy_(input_metadata.slot_mapping,
                                                 non_blocking=True)
        self.input_buffers["context_lens"].copy_(input_metadata.context_lens,
                                                 non_blocking=True)
        self.input_buffers["block_tables"].copy_(input_metadata.block_tables,
                                                 non_blocking=True)
620
621
622
623
624
625
626
627
628
629

        # Run the graph.
        self.graph.replay()

        # Return the output tensor.
        return self.output_buffers["hidden_states"]

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

630
631
632
633
634
635
636
637
638
639
640

def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
    assert len(x) <= max_len
    return x + [pad] * (max_len - len(x))


def _make_tensor_with_pad(
    x: List[List[int]],
    max_len: int,
    pad: int,
    dtype: torch.dtype,
641
    device: Union[str, torch.device] = "cuda",
642
    pin_memory: bool = False,
643
644
) -> torch.Tensor:
    padded_x = [_pad_to_max(x_i, max_len, pad) for x_i in x]
645
646
647
648
    return torch.tensor(padded_x,
                        dtype=dtype,
                        device=device,
                        pin_memory=pin_memory and str(device) == "cpu")
649
650
651
652
653
654
655
656
657


def _get_graph_batch_size(batch_size: int) -> int:
    if batch_size <= 2:
        return batch_size
    elif batch_size <= 4:
        return 4
    else:
        return (batch_size + 7) // 8 * 8
658
659
660
661
662


def _async_h2d(data: list, dtype, pin_memory):
    t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory)
    return t.to(device="cuda", non_blocking=True)