Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wuxk1
Megatron-LM
Commits
c6e7c7fd
Commit
c6e7c7fd
authored
Oct 15, 2021
by
mshoeybi
Browse files
removed return all probs
parent
8d405805
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
49 additions
and
63 deletions
+49
-63
megatron/text_generation/api.py
megatron/text_generation/api.py
+10
-19
megatron/text_generation/communication.py
megatron/text_generation/communication.py
+35
-13
megatron/text_generation/generation.py
megatron/text_generation/generation.py
+3
-29
megatron/text_generation_server.py
megatron/text_generation_server.py
+1
-2
No files found.
megatron/text_generation/api.py
View file @
c6e7c7fd
...
...
@@ -31,7 +31,6 @@ def generate_and_post_process(model,
prompts
=
None
,
tokens_to_generate
=
0
,
return_output_log_probs
=
False
,
return_all_log_probs
=
False
,
greedy_sampling
=
False
,
top_k_sampling
=
0
,
top_p_sampling
=
0.0
,
...
...
@@ -42,12 +41,11 @@ def generate_and_post_process(model,
move to cpu and convert to list."""
# Main inference.
tokens
,
lengths
,
output_log_probs
,
all_log_probs
=
generate
(
tokens
,
lengths
,
output_log_probs
=
generate
(
model
,
prompts
=
prompts
,
tokens_to_generate
=
tokens_to_generate
,
return_output_log_probs
=
return_output_log_probs
,
return_all_log_probs
=
return_all_log_probs
,
greedy_sampling
=
greedy_sampling
,
top_k_sampling
=
top_k_sampling
,
top_p_sampling
=
top_p_sampling
,
...
...
@@ -63,11 +61,9 @@ def generate_and_post_process(model,
if
return_output_log_probs
:
output_log_probs
=
output_log_probs
.
cpu
().
numpy
().
tolist
()
if
return_all_log_probs
:
all_log_probs
=
all_log_probs
.
cpu
().
numpy
().
tolist
()
return
prompts_plus_generations
,
prompts_plus_generations_segments
,
\
output_log_probs
,
all_log_probs
,
tokens
output_log_probs
,
tokens
return
None
...
...
@@ -77,7 +73,6 @@ def generate(model,
prompts
=
None
,
tokens_to_generate
=
0
,
return_output_log_probs
=
False
,
return_all_log_probs
=
False
,
greedy_sampling
=
False
,
top_k_sampling
=
0
,
top_p_sampling
=
0.0
,
...
...
@@ -90,24 +85,21 @@ def generate(model,
discard tokens in the tokens tensor that are after the
corresponding length.
output_log_probs: log probs of the tokens.
all_log_probs: full log probs for all of tokens.
"""
# Make sure input params are avaialble to all ranks.
values
=
[
tokens_to_generate
,
return_output_log_probs
,
return_all_log_probs
,
values
=
[
tokens_to_generate
,
return_output_log_probs
,
greedy_sampling
,
top_k_sampling
,
top_p_sampling
,
temperature
,
add_BOS
,
use_eod_token_for_early_termination
]
values_float_tensor
=
broadcast_float_list
(
9
,
float_list
=
values
)
values_float_tensor
=
broadcast_float_list
(
8
,
float_list
=
values
)
tokens_to_generate
=
int
(
values_float_tensor
[
0
].
item
())
return_output_log_probs
=
bool
(
values_float_tensor
[
1
].
item
())
return_all_log_probs
=
bool
(
values_float_tensor
[
2
].
item
())
greedy_sampling
=
bool
(
values_float_tensor
[
3
].
item
())
top_k_sampling
=
int
(
values_float_tensor
[
4
].
item
())
top_p_sampling
=
values_float_tensor
[
5
].
item
()
temperature
=
values_float_tensor
[
6
].
item
()
add_BOS
=
bool
(
values_float_tensor
[
7
].
item
())
use_eod_token_for_early_termination
=
bool
(
values_float_tensor
[
8
].
item
())
greedy_sampling
=
bool
(
values_float_tensor
[
2
].
item
())
top_k_sampling
=
int
(
values_float_tensor
[
3
].
item
())
top_p_sampling
=
values_float_tensor
[
4
].
item
()
temperature
=
values_float_tensor
[
5
].
item
()
add_BOS
=
bool
(
values_float_tensor
[
6
].
item
())
use_eod_token_for_early_termination
=
bool
(
values_float_tensor
[
7
].
item
())
# Tokenize prompts and get the batch.
# Note that these tensors are broadcaseted to all ranks.
...
...
@@ -122,7 +114,6 @@ def generate(model,
return
generate_tokens_probs_and_return_on_first_stage
(
model
,
context_tokens_tensor
,
context_length_tensor
,
return_output_log_probs
=
return_output_log_probs
,
return_all_log_probs
=
return_all_log_probs
,
greedy
=
greedy_sampling
,
top_k
=
top_k_sampling
,
top_p
=
top_p_sampling
,
temperature
=
temperature
,
use_eod_token_for_early_termination
=
use_eod_token_for_early_termination
)
megatron/text_generation/communication.py
View file @
c6e7c7fd
...
...
@@ -55,13 +55,31 @@ def send_to_next_pipeline_rank(tensor=None):
def
_is_cuda
(
tensor
):
"""Check if a tensor is not none and is cuda."""
assert
tensor
is
not
None
assert
tensor
.
is_cuda
def
_is_cuda_contiguous
(
tensor
):
"""Check if a tensor is not none, is cuda, and is contiguous."""
_is_cuda
(
tensor
)
assert
tensor
.
is_contiguous
()
def
broadcast_from_last_pipeline_stage
(
size
,
dtype
,
tensor
=
None
):
"""Broadcast a tensor from last pipeline stage to all ranks."""
if
mpu
.
is_pipeline_last_stage
():
assert
tensor
is
not
None
assert
tensor
.
is_cuda
assert
tensor
.
is_contiguous
()
is_last_stage
=
mpu
.
is_pipeline_last_stage
()
# If first stage and last state are the same, then there is no
# pipeline parallelism and no need to communicate.
if
mpu
.
is_pipeline_first_stage
()
and
is_last_stage
:
return
tensor
if
is_last_stage
:
_is_cuda_contiguous
(
tensor
)
else
:
tensor
=
torch
.
empty
(
size
,
dtype
=
dtype
,
...
...
@@ -78,14 +96,16 @@ def broadcast_from_last_pipeline_stage(size, dtype, tensor=None):
def
broadcast_from_last_to_first_pipeline_stage
(
size
,
dtype
,
tensor
=
None
):
"""Broadcast tensor values from last stage into the first stage."""
# Only first and last stage pipeline stages need to be involved.
is_last_stage
=
mpu
.
is_pipeline_last_stage
()
is_first_stage
=
mpu
.
is_pipeline_first_stage
()
# If first stage and last state are the same, then there is no
# pipeline parallelism and no need to communicate.
if
is_first_stage
and
is_last_stage
:
return
tensor
# Only first and last stage pipeline stages need to be involved.
if
is_last_stage
or
is_first_stage
:
if
is_last_stage
:
assert
tensor
is
not
None
assert
tensor
.
is_cuda
assert
tensor
.
is_contiguous
()
_is_cuda_contiguous
(
tensor
)
else
:
tensor
=
torch
.
empty
(
size
,
dtype
=
dtype
,
...
...
@@ -105,12 +125,15 @@ def copy_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
"""Copy tensor values from last stage into the first stage.
Note that the input tensor is updated in place."""
# Only first and last stage pipeline stages need to be involved.
is_last_stage
=
mpu
.
is_pipeline_last_stage
()
is_first_stage
=
mpu
.
is_pipeline_first_stage
()
# If first stage and last state are the same, then there is no
# pipeline parallelism and no need to communicate.
if
is_first_stage
and
is_last_stage
:
return
# Only first and last stage pipeline stages need to be involved.
if
is_last_stage
or
is_first_stage
:
assert
tensor
is
not
None
assert
tensor
.
is_cuda
_is_cuda
(
tensor
)
is_contiguous
=
tensor
.
is_contiguous
()
src
=
mpu
.
get_pipeline_model_parallel_last_rank
()
group
=
mpu
.
get_embedding_group
()
...
...
@@ -137,8 +160,7 @@ def broadcast_tensor(size, dtype, tensor=None, rank=0):
"""
if
torch
.
distributed
.
get_rank
()
==
rank
:
assert
tensor
is
not
None
assert
tensor
.
is_cuda
_is_cuda_contiguous
(
tensor
)
else
:
tensor
=
torch
.
empty
(
size
,
dtype
=
dtype
,
...
...
megatron/text_generation/generation.py
View file @
c6e7c7fd
...
...
@@ -31,7 +31,6 @@ from .sampling import sample
def
generate_tokens_probs_and_return_on_first_stage
(
model
,
tokens
,
lengths
,
return_output_log_probs
=
False
,
return_all_log_probs
=
False
,
greedy
=
False
,
top_k
=
0
,
top_p
=
0.0
,
temperature
=
1.0
,
use_eod_token_for_early_termination
=
True
):
...
...
@@ -43,9 +42,6 @@ def generate_tokens_probs_and_return_on_first_stage(
return_output_log_probs: flag to calculate the log probability of
the generated tokens. Note that the log probability is the one
after logits are modifed for sampling.
return_all_log_probs: flag to calculate the log probability of across
all the tokens (vocab size). Note that the log probability is the
one after logits are modifed for sampling.
greedy, top_k, top_p: greedy, top-k, and top-p sampling parameters.
Note that these three paramters are exclusive meaning that:
if greedy = true then we should have top-k=top-p=0.
...
...
@@ -62,8 +58,6 @@ def generate_tokens_probs_and_return_on_first_stage(
generated_sequence_lengths: total length (including prompt) of
the generated sequence. size: [b]
output_log_probs: log probability of the selected tokens. size: [b, s]
all_log_probs: log probability of all the tokens.
size: [b, s, vocab-size]
"""
args
=
get_args
()
...
...
@@ -91,10 +85,6 @@ def generate_tokens_probs_and_return_on_first_stage(
# Log probability of the sequence (prompt + generated tokens).
output_log_probs
=
None
output_log_probs_size
=
(
batch_size
,
max_sequence_length
-
1
)
# Log probability of all tokens for the sequence.
all_log_probs
=
None
all_log_probs_size
=
(
batch_size
,
max_sequence_length
-
1
,
args
.
padded_vocab_size
)
# Lengths of generated seuquence including including prompts.
generated_sequence_lengths
=
None
if
mpu
.
is_pipeline_last_stage
():
...
...
@@ -102,10 +92,6 @@ def generate_tokens_probs_and_return_on_first_stage(
output_log_probs
=
torch
.
empty
(
output_log_probs_size
,
dtype
=
torch
.
float32
,
device
=
torch
.
cuda
.
current_device
())
if
return_all_log_probs
:
all_log_probs
=
torch
.
empty
(
all_log_probs_size
,
dtype
=
torch
.
float32
,
device
=
torch
.
cuda
.
current_device
())
generated_sequence_lengths
=
torch
.
ones
(
batch_size
,
dtype
=
torch
.
int64
,
device
=
torch
.
cuda
.
current_device
())
*
max_sequence_length
...
...
@@ -157,12 +143,8 @@ def generate_tokens_probs_and_return_on_first_stage(
tokens
[
started
,
context_length
]
=
new_sample
[
started
]
# Calculate the log probabilities.
if
return_output_log_probs
or
return_all_log_probs
:
if
return_output_log_probs
:
log_probs
=
F
.
log_softmax
(
logits
,
dim
=
2
)
if
return_all_log_probs
:
all_log_probs
[:,
prev_context_length
:
context_length
,
:]
=
log_probs
if
return_output_log_probs
:
# Pick the tokens that we need to get the log
# probabilities for. Note that next input token is
...
...
@@ -208,8 +190,6 @@ def generate_tokens_probs_and_return_on_first_stage(
if
mpu
.
is_pipeline_last_stage
():
if
return_output_log_probs
:
output_log_probs
=
output_log_probs
[:,
:
context_length
]
if
return_all_log_probs
:
all_log_probs
=
all_log_probs
[:,
:
context_length
,
:]
# ======================================
# Broadcast to the first pipeline stage.
...
...
@@ -221,14 +201,8 @@ def generate_tokens_probs_and_return_on_first_stage(
output_log_probs_size
=
(
batch_size
,
context_length
)
output_log_probs
=
broadcast_from_last_to_first_pipeline_stage
(
output_log_probs_size
,
torch
.
float32
,
output_log_probs
)
if
return_all_log_probs
:
all_log_probs_size
=
(
batch_size
,
context_length
,
args
.
padded_vocab_size
)
all_log_probs
=
broadcast_from_last_to_first_pipeline_stage
(
all_log_probs_size
,
torch
.
float32
,
all_log_probs
)
return
tokens
,
generated_sequence_lengths
,
output_log_probs
,
\
all_log_probs
return
tokens
,
generated_sequence_lengths
,
output_log_probs
...
...
megatron/text_generation_server.py
View file @
c6e7c7fd
...
...
@@ -101,13 +101,12 @@ class MegatronGenerate(Resource):
with
lock
:
# Need to get lock to keep multiple threads from hitting code
MegatronGenerate
.
send_do_generate
()
# Tell other ranks we're doing generate
response
,
response_seg
,
response_logprobs
,
_
,
_
=
\
response
,
response_seg
,
response_logprobs
,
_
=
\
generate_and_post_process
(
self
.
model
,
prompts
=
prompts
,
tokens_to_generate
=
tokens_to_generate
,
return_output_log_probs
=
logprobs
,
return_all_log_probs
=
False
,
greedy_sampling
=
args
.
greedy
,
top_k_sampling
=
top_k
,
top_p_sampling
=
top_p
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment