schedules.py 29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

Jared Casper's avatar
Jared Casper committed
31
32
33
34
35
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
36
37
38
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
Jared Casper's avatar
Jared Casper committed
39
40
41
42
43
44
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

45
def free_output_tensor(output_tensors, deallocate_pipeline_outputs):
46
47
48
49
50
51
    '''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
52
    if not deallocate_pipeline_outputs or output_tensors is None:
53
54
55
56
        return
    if isinstance(output_tensors, torch.Tensor):
        output_tensors = [output_tensors]
    for output_tensor in output_tensors:
57
58
        output_tensor.data = torch.cuda.FloatTensor([0])
        
59
def custom_backward(output, grad_output):
60
61
62
63
64
65
66
    '''Directly call C++ autograd engine.

    To make the 'free_output_tensor' (above) optimization work, the C++
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
Jared Casper's avatar
Jared Casper committed
93

94
95
96
97
98
99
def forward_step(forward_step_func,
                 data_iterator,
                 model,
                 input_tensor,
                 forward_data_store,
                 collect_non_loss_data=False):
100
101
102
103
104
105
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
106
    args = get_args()
107
108
109
    timers = get_timers()

    timers('forward-compute').start()
110
111
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
112
113
114
115
116
117

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

118
    unwrapped_model.set_input_tensor(input_tensor)
119
    output_tensor, loss_func = forward_step_func(data_iterator, model)
120
    if mpu.is_pipeline_last_stage():
121
122
123
124
125
126
127
128
129
        if not collect_non_loss_data:
            output_tensor = loss_func(output_tensor)
            loss, loss_reduced = output_tensor
            output_tensor = loss / get_num_microbatches()
            forward_data_store.append(loss_reduced)
        else:
            data = loss_func(output_tensor, non_loss_data=True)
            forward_data_store.append(data)

130
131
    timers('forward-compute').stop()

132
133
134
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
135
136
137
138
139
140
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
141
142
143


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
144
145
146
147
148
149
150
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
151
152
153
154

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
155
156
157
158
159
160
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
161
162
163
164
165
166
167
168
169
170
171
172
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
173
174

    # Backward pass.
175
176
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
177
178
179
180
181
    if args.deallocate_pipeline_outputs:
        custom_backward(output_tensor[0], output_tensor_grad[0])
    else:
        torch.autograd.backward(output_tensor[0],
                                grad_tensors=output_tensor_grad[0])
182
183

    # Collect the grad of the input_tensor.
184
    input_tensor_grad = [None]
185
    if input_tensor is not None:
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
202
203
204
205
206
207

    timers('backward-compute').stop()

    return input_tensor_grad


208
209
210
211
212
213
214
215
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


216
217
218
219
220
221
def forward_backward_no_pipelining(forward_step_func,
                                   data_iterator, model,
                                   optimizer,
                                   timers,
                                   forward_only,
                                   collect_non_loss_data=False):
222
223
224
225
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
226
227
228
    assert len(model) == 1
    model = model[0]

229
230
231
232
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

233
    forward_data_store = []
234
235
236
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
237
238
239
            output_tensor = forward_step(forward_step_func, data_iterator,
                                         model, input_tensor, forward_data_store,
                                         collect_non_loss_data)
240
241
242
243
244
245
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
246
247
248
    output_tensor = forward_step(forward_step_func, data_iterator,
                                 model, input_tensor, forward_data_store,
                                 collect_non_loss_data)
249
250
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
251

252
    return forward_data_store
253
254


255
256
257
258
259
260
def forward_backward_pipelining_with_interleaving(forward_step_func,
                                                  data_iterator, model,
                                                  optimizer,
                                                  timers,
                                                  forward_only, 
                                                  collect_non_loss_data=False):
261
262
263
264
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
265
266
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
267
    forward_data_store = []
268
269
270
271
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
272
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
273

274
275
276
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

277
278
279
280
281
282
283
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
284
285
286
287
288
289
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
290
291
292
293
294
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
295
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
296
297
298
299
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
300
301
302
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

303
    def get_model_chunk_id(microbatch_id, forward):
304
        """Helper method to get the model chunk ID given the iteration number."""
305
306
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
307
        if not forward:
308
309
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
310

311
    def forward_step_helper(microbatch_id):
312
313
314
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
315
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
316
317
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

318
        # forward step
319
        if mpu.is_pipeline_first_stage():
320
321
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
322
323
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
324
325
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
326
                                     model[model_chunk_id],
327
328
329
                                     input_tensor, 
                                     forward_data_store,
                                     collect_non_loss_data)
330
331
        output_tensors[model_chunk_id].append(output_tensor)

332
333
334
335
336
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

337
338
        return output_tensor

339
    def backward_step_helper(microbatch_id):
340
341
342
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
343
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
344
345
346
347
348
349
350
351
352
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
353
354
355
356
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
357
358
359
360
361

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
362
    input_tensors[0].append(
363
        p2p_communication.recv_forward(tensor_shape, timers=timers))
364
365
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
366
367

        # Determine if tensor should be received from previous stage.
368
369
370
371
372
373
374
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
375
376

        # Don't send tensor downstream if on last stage.
377
378
        if mpu.is_pipeline_last_stage():
            output_tensor = None
379
380
381

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
382
383
384
385
386
387
388
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
389
                p2p_communication.send_forward_backward_recv_forward_backward(
390
391
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
392
                        tensor_shape=tensor_shape,
393
394
395
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
396
            input_tensor = \
397
                p2p_communication.send_forward_recv_forward(
398
399
400
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
401
        free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
440
441
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
442
443
444
445
446
447
448
449
450
451

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
452
453
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
454

455
456
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
457
458
459
460
461
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
462
            p2p_communication.send_forward_backward_recv_forward_backward(
463
464
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
465
                    tensor_shape=tensor_shape, timers=timers)
466
        free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
467

468
469
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
470
471
472
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
473
474
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
475

476
    # Run cooldown backward passes (flush out pipeline).
477
478
479
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
480
                p2p_communication.recv_backward(tensor_shape, timers=timers))
481
482
483
484
485
486
487
488
489
490
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
491
                p2p_communication.send_backward_recv_backward(
492
493
494
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
495

496
    return forward_data_store
497
498


499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


593
594
595
596
597
598
599
def forward_backward_pipelining_without_interleaving(forward_step_func,
                                                     data_iterator,
                                                     model,
                                                     optimizer,
                                                     timers,
                                                     forward_only,
                                                     collect_non_loss_data=False):
600
601
602
603
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
604
    args = get_args()
605
606
    timers = get_timers()

607
608
609
610
611
612
613
614
615
616
617
618
619
620
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

621
622
623
624
625
626
627
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

628
629
630
631
632
633
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
634
    forward_data_store = []
635
636
637

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
638
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
639
        output_tensor = forward_step(forward_step_func, data_iterator, model,
640
641
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
642
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
643

644
645
646
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
647
            free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
648
649
650
651
652

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
653
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
654
655
656
657
658
659

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
660
661
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
662
        if forward_only:
663
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
664
665

            if not last_iteration:
666
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
667

668
        else:
669
            output_tensor_grad = \
670
671
672
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
673

674
675
676
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
677
            free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
678

679
680
681
682
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
683
684
685
686
687
688
689

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
690
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
691
            else:
692
                input_tensor = \
693
694
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
695
696
697
698
699
700
701

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

702
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
703
704
705
706
707

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

708
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
709

710
    return forward_data_store