nodes_slg.py 6.58 KB
Newer Older
wuxk1's avatar
wuxk1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import comfy.model_patcher
import comfy.samplers
import re


class SkipLayerGuidanceDiT:
    '''
    Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
    Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377)
    Original experimental implementation for SD3 by Dango233@StabilityAI.
    '''
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"model": ("MODEL", ),
                             "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
                             "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
                             "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}),
                             "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "rescaling_scale": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                                }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "skip_guidance"
    EXPERIMENTAL = True

    DESCRIPTION = "Generic version of SkipLayerGuidance node that can be used on every DiT model."

    CATEGORY = "advanced/guidance"

    def skip_guidance(self, model, scale, start_percent, end_percent, double_layers="", single_layers="", rescaling_scale=0):
        # check if layer is comma separated integers
        def skip(args, extra_args):
            return args

        model_sampling = model.get_model_object("model_sampling")
        sigma_start = model_sampling.percent_to_sigma(start_percent)
        sigma_end = model_sampling.percent_to_sigma(end_percent)

        double_layers = re.findall(r'\d+', double_layers)
        double_layers = [int(i) for i in double_layers]

        single_layers = re.findall(r'\d+', single_layers)
        single_layers = [int(i) for i in single_layers]

        if len(double_layers) == 0 and len(single_layers) == 0:
            return (model, )

        def post_cfg_function(args):
            model = args["model"]
            cond_pred = args["cond_denoised"]
            cond = args["cond"]
            cfg_result = args["denoised"]
            sigma = args["sigma"]
            x = args["input"]
            model_options = args["model_options"].copy()

            for layer in double_layers:
                model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer)

            for layer in single_layers:
                model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "single_block", layer)

            model_sampling.percent_to_sigma(start_percent)

            sigma_ = sigma[0].item()
            if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start:
                (slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
                cfg_result = cfg_result + (cond_pred - slg) * scale
                if rescaling_scale != 0:
                    factor = cond_pred.std() / cfg_result.std()
                    factor = rescaling_scale * factor + (1 - rescaling_scale)
                    cfg_result *= factor

            return cfg_result

        m = model.clone()
        m.set_model_sampler_post_cfg_function(post_cfg_function)

        return (m, )

class SkipLayerGuidanceDiTSimple:
    '''
    Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass.
    '''
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"model": ("MODEL", ),
                             "double_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
                             "single_layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                                }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "skip_guidance"
    EXPERIMENTAL = True

    DESCRIPTION = "Simple version of the SkipLayerGuidanceDiT node that only modifies the uncond pass."

    CATEGORY = "advanced/guidance"

    def skip_guidance(self, model, start_percent, end_percent, double_layers="", single_layers=""):
        def skip(args, extra_args):
            return args

        model_sampling = model.get_model_object("model_sampling")
        sigma_start = model_sampling.percent_to_sigma(start_percent)
        sigma_end = model_sampling.percent_to_sigma(end_percent)

        double_layers = re.findall(r'\d+', double_layers)
        double_layers = [int(i) for i in double_layers]

        single_layers = re.findall(r'\d+', single_layers)
        single_layers = [int(i) for i in single_layers]

        if len(double_layers) == 0 and len(single_layers) == 0:
            return (model, )

        def calc_cond_batch_function(args):
            x = args["input"]
            model = args["model"]
            conds = args["conds"]
            sigma = args["sigma"]

            model_options = args["model_options"]
            slg_model_options = model_options.copy()

            for layer in double_layers:
                slg_model_options = comfy.model_patcher.set_model_options_patch_replace(slg_model_options, skip, "dit", "double_block", layer)

            for layer in single_layers:
                slg_model_options = comfy.model_patcher.set_model_options_patch_replace(slg_model_options, skip, "dit", "single_block", layer)

            cond, uncond = conds
            sigma_ = sigma[0].item()
            if sigma_ >= sigma_end and sigma_ <= sigma_start and uncond is not None:
                cond_out, _ = comfy.samplers.calc_cond_batch(model, [cond, None], x, sigma, model_options)
                _, uncond_out = comfy.samplers.calc_cond_batch(model, [None, uncond], x, sigma, slg_model_options)
                out = [cond_out, uncond_out]
            else:
                out = comfy.samplers.calc_cond_batch(model, conds, x, sigma, model_options)

            return out

        m = model.clone()
        m.set_model_sampler_calc_cond_batch_function(calc_cond_batch_function)

        return (m, )

NODE_CLASS_MAPPINGS = {
    "SkipLayerGuidanceDiT": SkipLayerGuidanceDiT,
    "SkipLayerGuidanceDiTSimple": SkipLayerGuidanceDiTSimple,
}