README_origin.md 56.5 KB
Newer Older
weishb's avatar
weishb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
---
license: apache-2.0
---

# Qwen3-TTS

## Overview
### Introduction

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-TTS-Repo/qwen3_tts_introduction.png" width="90%"/>
<p>

Qwen3-TTS covers 10 major languages (Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, and Italian) as well as multiple dialectal voice profiles to meet global application needs. In addition, the models feature strong contextual understanding, enabling adaptive control of tone, speaking rate, and emotional expression based on instructions and text semantics, and they show markedly improved robustness to noisy input text. Key features:

* **Powerful Speech Representation**: Powered by the self-developed Qwen3-TTS-Tokenizer-12Hz, it achieves efficient acoustic compression and high-dimensional semantic modeling of speech signals. It fully preserves paralinguistic information and acoustic environmental features, enabling high-speed, high-fidelity speech reconstruction through a lightweight non-DiT architecture.
* **Universal End-to-End Architecture**: Utilizing a discrete multi-codebook LM architecture, it realizes full-information end-to-end speech modeling. This completely bypasses the information bottlenecks and cascading errors inherent in traditional LM+DiT schemes, significantly enhancing the model’s versatility, generation efficiency, and performance ceiling.
* **Extreme Low-Latency Streaming Generation**: Based on the innovative Dual-Track hybrid streaming generation architecture, a single model supports both streaming and non-streaming generation. It can output the first audio packet immediately after a single character is input, with end-to-end synthesis latency as low as 97ms, meeting the rigorous demands of real-time interactive scenarios.
* **Intelligent Text Understanding and Voice Control**: Supports speech generation driven by natural language instructions, allowing for flexible control over multi-dimensional acoustic attributes such as timbre, emotion, and prosody. By deeply integrating text semantic understanding, the model adaptively adjusts tone, rhythm, and emotional expression, achieving lifelike “what you imagine is what you hear” output.


### Model Architecture

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-TTS-Repo/overview.png" width="80%"/>
<p>

### Released Models Description and Download

Below is an introduction and download information for the Qwen3-TTS models that have already been released. Other models mentioned in the technical report will be released in the near future. Please select and download the model that fits your needs.

| Tokenizer Name                      | Description |
|---------------------------------|-------------|
| Qwen3-TTS-Tokenizer-12Hz        | The Qwen3-TTS-Tokenizer-12Hz model which can encode the input speech into codes and decode them back into speech. |


| Model | Features | Language Support | Streaming | Instruction Control |
|---|---|---|---|---|
| Qwen3-TTS-12Hz-1.7B-VoiceDesign | Performs voice design based on user-provided descriptions. | Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, Italian | ✅ | ✅ |
| Qwen3-TTS-12Hz-1.7B-CustomVoice | Provides style control over target timbres via user instructions; supports 9 premium timbres covering various combinations of gender, age, language, and dialect. | Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, Italian | ✅ | ✅ |
| Qwen3-TTS-12Hz-1.7B-Base | Base model capable of 3-second rapid voice clone from user audio input; can be used for fine-tuning (FT) other models. | Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, Italian | ✅ |  |
| Qwen3-TTS-12Hz-0.6B-CustomVoice | Supports 9 premium timbres covering various combinations of gender, age, language, and dialect. | Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, Italian | ✅ |  |
| Qwen3-TTS-12Hz-0.6B-Base | Base model capable of 3-second rapid voice clone from user audio input; can be used for fine-tuning (FT) other models. | Chinese, English, Japanese, Korean, German, French, Russian, Portuguese, Spanish, Italian | ✅ |  |

During model loading in the qwen-tts package or vLLM, model weights will be automatically downloaded based on the model name. However, if your runtime environment is not conducive to downloading weights during execution, you can refer to the following commands to manually download the model weights to a local directory:

```bash
# Download through ModelScope (recommended for users in Mainland China)
pip install -U modelscope
modelscope download --model Qwen/Qwen3-TTS-Tokenizer-12Hz  --local_dir ./Qwen3-TTS-Tokenizer-12Hz 
modelscope download --model Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice --local_dir ./Qwen3-TTS-12Hz-1.7B-CustomVoice
modelscope download --model Qwen/Qwen3-TTS-12Hz-1.7B-VoiceDesign --local_dir ./Qwen3-TTS-12Hz-1.7B-VoiceDesign
modelscope download --model Qwen/Qwen3-TTS-12Hz-1.7B-Base --local_dir ./Qwen3-TTS-12Hz-1.7B-Base
modelscope download --model Qwen/Qwen3-TTS-12Hz-0.6B-CustomVoice --local_dir ./Qwen3-TTS-12Hz-0.6B-CustomVoice
modelscope download --model Qwen/Qwen3-TTS-12Hz-0.6B-Base --local_dir ./Qwen3-TTS-12Hz-0.6B-Base

# Download through Hugging Face
pip install -U "huggingface_hub[cli]"
huggingface-cli download Qwen/Qwen3-TTS-Tokenizer-12Hz --local-dir ./Qwen3-TTS-Tokenizer-12Hz
huggingface-cli download Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice --local-dir ./Qwen3-TTS-12Hz-1.7B-CustomVoice
huggingface-cli download Qwen/Qwen3-TTS-12Hz-1.7B-VoiceDesign --local-dir ./Qwen3-TTS-12Hz-1.7B-VoiceDesign
huggingface-cli download Qwen/Qwen3-TTS-12Hz-1.7B-Base --local-dir ./Qwen3-TTS-12Hz-1.7B-Base
huggingface-cli download Qwen/Qwen3-TTS-12Hz-0.6B-CustomVoice --local-dir ./Qwen3-TTS-12Hz-0.6B-CustomVoice
huggingface-cli download Qwen/Qwen3-TTS-12Hz-0.6B-Base --local-dir ./Qwen3-TTS-12Hz-0.6B-Base
```


## Quickstart

### Environment Setup

The easiest way to quickly use Qwen3-TTS is to install the `qwen-tts` Python package from PyPI. This will pull in the required runtime dependencies and allow you to load any released Qwen3-TTS model. We recommend using a **fresh, isolated environment** to avoid dependency conflicts with existing packages. You can create a clean Python 3.12 environment like this:

```bash
conda create -n qwen3-tts python=3.12 -y
conda activate qwen3-tts
```

then run:

```bash
pip install -U qwen-tts
```

If you want to develop or modify the code locally, install from source in editable mode.

```bash
git clone https://github.com/QwenLM/Qwen3-TTS.git
cd Qwen3-TTS
pip install -e .
```

Additionally, we recommend using FlashAttention 2 to reduce GPU memory usage.

```bash
pip install -U flash-attn --no-build-isolation
```

If your machine has less than 96GB of RAM and lots of CPU cores, run:

```bash
MAX_JOBS=4 pip install -U flash-attn --no-build-isolation
```

Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [FlashAttention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention 2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.


### Python Package Usage

After installation, you can import `Qwen3TTSModel` to run custom voice TTS, voice design, and voice clone. The model weights can be specified either as a Hugging Face model id (recommended) or as a local directory path you downloaded. For all the `generate_*` functions below, besides the parameters shown and explicitly documented, you can also pass generation kwargs supported by Hugging Face Transformers `model.generate`, e.g., `max_new_tokens`, `top_p`, etc.

#### Custom Voice Generate

For custom voice models (`Qwen3-TTS-12Hz-1.7B/0.6B-CustomVoice`), you just need to call `generate_custom_voice`, passing a single string or a batch list, along with `language`, `speaker`, and optional `instruct`. You can also call `model.get_supported_speakers()` and `model.get_supported_languages()` to see which speakers and languages the current model supports.

```python
import torch
import soundfile as sf
from qwen_tts import Qwen3TTSModel

model = Qwen3TTSModel.from_pretrained(
    "Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice",
    device_map="cuda:0",
    dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)

# single inference
wavs, sr = model.generate_custom_voice(
    text="其实我真的有发现,我是一个特别善于观察别人情绪的人。",
    language="Chinese", # Pass `Auto` (or omit) for auto language adaptive; if the target language is known, set it explicitly.
    speaker="Vivian",
    instruct="用特别愤怒的语气说", # Omit if not needed.
)
sf.write("output_custom_voice.wav", wavs[0], sr)

# batch inference
wavs, sr = model.generate_custom_voice(
    text=[
        "其实我真的有发现,我是一个特别善于观察别人情绪的人。", 
        "She said she would be here by noon."
    ],
    language=["Chinese", "English"],
    speaker=["Vivian", "Ryan"],
    instruct=["", "Very happy."]
)
sf.write("output_custom_voice_1.wav", wavs[0], sr)
sf.write("output_custom_voice_2.wav", wavs[1], sr)
```

For `Qwen3-TTS-12Hz-1.7B/0.6B-CustomVoice` models, the supported speaker list and speaker descriptions are provided below. We recommend using each speaker’s native language for the best quality. Of course, each speaker can speak any language supported by the model.

| Speaker | Voice Description  |  Native language |
| --- | --- | --- |
| Vivian | Bright, slightly edgy young female voice. | Chinese |
| Serena | Warm, gentle young female voice. | Chinese |
| Uncle_Fu | Seasoned male voice with a low, mellow timbre. | Chinese |
| Dylan | Youthful Beijing male voice with a clear, natural timbre. | Chinese (Beijing Dialect) |
| Eric | Lively Chengdu male voice with a slightly husky brightness. | Chinese (Sichuan Dialect) |
| Ryan | Dynamic male voice with strong rhythmic drive. | English |
| Aiden | Sunny American male voice with a clear midrange. | English |
| Ono_Anna | Playful Japanese female voice with a light, nimble timbre. | Japanese |
| Sohee | Warm Korean female voice with rich emotion. | Korean |

#### Voice Design

For the voice design model (`Qwen3-TTS-12Hz-1.7B-VoiceDesign`), you can use `generate_voice_design` to provide the target text and a natural-language `instruct` description.

```python
import torch
import soundfile as sf
from qwen_tts import Qwen3TTSModel

model = Qwen3TTSModel.from_pretrained(
    "Qwen/Qwen3-TTS-12Hz-1.7B-VoiceDesign",
    device_map="cuda:0",
    dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)

# single inference
wavs, sr = model.generate_voice_design(
    text="哥哥,你回来啦,人家等了你好久好久了,要抱抱!",
    language="Chinese",
    instruct="体现撒娇稚嫩的萝莉女声,音调偏高且起伏明显,营造出黏人、做作又刻意卖萌的听觉效果。",
)
sf.write("output_voice_design.wav", wavs[0], sr)

# batch inference
wavs, sr = model.generate_voice_design(
    text=[
      "哥哥,你回来啦,人家等了你好久好久了,要抱抱!",
      "It's in the top drawer... wait, it's empty? No way, that's impossible! I'm sure I put it there!"
    ],
    language=["Chinese", "English"],
    instruct=[
      "体现撒娇稚嫩的萝莉女声,音调偏高且起伏明显,营造出黏人、做作又刻意卖萌的听觉效果。",
      "Speak in an incredulous tone, but with a hint of panic beginning to creep into your voice."
    ]
)
sf.write("output_voice_design_1.wav", wavs[0], sr)
sf.write("output_voice_design_2.wav", wavs[1], sr)
```

#### Voice Clone

For the voice clone model (`Qwen3-TTS-12Hz-1.7B/0.6B-Base`), to clone a voice and synthesize new content, you just need to provide a reference audio clip (`ref_audio`) along with its transcript (`ref_text`). `ref_audio` can be a local file path, a URL, a base64 string, or a `(numpy_array, sample_rate)` tuple. If you set `x_vector_only_mode=True`, only the speaker embedding is used so `ref_text` is not required, but cloning quality may be reduced.

```python
import torch
import soundfile as sf
from qwen_tts import Qwen3TTSModel

model = Qwen3TTSModel.from_pretrained(
    "Qwen/Qwen3-TTS-12Hz-1.7B-Base",
    device_map="cuda:0",
    dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)

ref_audio = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-TTS-Repo/clone.wav"
ref_text  = "Okay. Yeah. I resent you. I love you. I respect you. But you know what? You blew it! And thanks to you."

wavs, sr = model.generate_voice_clone(
    text="I am solving the equation: x = [-b ± √(b²-4ac)] / 2a? Nobody can — it's a disaster (◍•͈⌔•͈◍), very sad!",
    language="English",
    ref_audio=ref_audio,
    ref_text=ref_text,
)
sf.write("output_voice_clone.wav", wavs[0], sr)
```

If you need to reuse the same reference prompt across multiple generations (to avoid recomputing prompt features), build it once with `create_voice_clone_prompt` and pass it via `voice_clone_prompt`.

```python
prompt_items = model.create_voice_clone_prompt(
    ref_audio=ref_audio,
    ref_text=ref_text,
    x_vector_only_mode=False,
)
wavs, sr = model.generate_voice_clone(
    text=["Sentence A.", "Sentence B."],
    language=["English", "English"],
    voice_clone_prompt=prompt_items,
)
sf.write("output_voice_clone_1.wav", wavs[0], sr)
sf.write("output_voice_clone_2.wav", wavs[1], sr)
```

For more examples of reusable voice clone prompts, batch cloning, and batch inference, please refer to the [example codes](https://github.com/QwenLM/Qwen3-TTS/blob/main/examples/test_model_12hz_base.py). With those examples and the `generate_voice_clone` function description, you can explore more advanced usage patterns.

#### Voice Design then Clone

If you want a designed voice that you can reuse like a cloned speaker, a practical workflow is: (1) use the **VoiceDesign** model to synthesize a short reference clip that matches your target persona, (2) feed that clip into `create_voice_clone_prompt` to build a reusable prompt, and then (3) call `generate_voice_clone` with `voice_clone_prompt` to generate new content without re-extracting features every time. This is especially useful when you want a consistent character voice across many lines.

```python
import torch
import soundfile as sf
from qwen_tts import Qwen3TTSModel

# create a reference audio in the target style using the VoiceDesign model
design_model = Qwen3TTSModel.from_pretrained(
    "Qwen/Qwen3-TTS-12Hz-1.7B-VoiceDesign",
    device_map="cuda:0",
    dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)

ref_text = "H-hey! You dropped your... uh... calculus notebook? I mean, I think it's yours? Maybe?"
ref_instruct = "Male, 17 years old, tenor range, gaining confidence - deeper breath support now, though vowels still tighten when nervous"
ref_wavs, sr = design_model.generate_voice_design(
    text=ref_text,
    language="English",
    instruct=ref_instruct
)
sf.write("voice_design_reference.wav", ref_wavs[0], sr)

# build a reusable clone prompt from the voice design reference
clone_model = Qwen3TTSModel.from_pretrained(
    "Qwen/Qwen3-TTS-12Hz-1.7B-Base",
    device_map="cuda:0",
    dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)

voice_clone_prompt = clone_model.create_voice_clone_prompt(
    ref_audio=(ref_wavs[0], sr),   # or "voice_design_reference.wav"
    ref_text=ref_text,
)

sentences = [
    "No problem! I actually... kinda finished those already? If you want to compare answers or something...",
    "What? No! I mean yes but not like... I just think you're... your titration technique is really precise!",
]

# reuse it for multiple single calls
wavs, sr = clone_model.generate_voice_clone(
    text=sentences[0],
    language="English",
    voice_clone_prompt=voice_clone_prompt,
)
sf.write("clone_single_1.wav", wavs[0], sr)

wavs, sr = clone_model.generate_voice_clone(
    text=sentences[1],
    language="English",
    voice_clone_prompt=voice_clone_prompt,
)
sf.write("clone_single_2.wav", wavs[0], sr)

# or batch generate in one call
wavs, sr = clone_model.generate_voice_clone(
    text=sentences,
    language=["English", "English"],
    voice_clone_prompt=voice_clone_prompt,
)
for i, w in enumerate(wavs):
    sf.write(f"clone_batch_{i}.wav", w, sr)
```

#### Tokenizer Encode and Decode

If you only want to encode and decode audio for transport or training and so on, `Qwen3TTSTokenizer` supports encode/decode with paths, URLs, numpy waveforms, and dict/list payloads, for example:

```python
import soundfile as sf
from qwen_tts import Qwen3TTSTokenizer

tokenizer = Qwen3TTSTokenizer.from_pretrained(
    "Qwen/Qwen3-TTS-Tokenizer-12Hz",
    device_map="cuda:0",
)

enc = tokenizer.encode("https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-TTS-Repo/tokenizer_demo_1.wav")
wavs, sr = tokenizer.decode(enc)
sf.write("decode_output.wav", wavs[0], sr)
```

For more tokenizer examples (including different input formats and batch usage), please refer to the [example codes](https://github.com/QwenLM/Qwen3-TTS/blob/main/examples/test_tokenizer_12hz.py). With those examples and the description for `Qwen3TTSTokenizer`, you can explore more advanced usage patterns.

### Launch Local Web UI Demo

To launch the Qwen3-TTS web ui demo, simply install the `qwen-tts` package and run `qwen-tts-demo`. Use the command below for help:

```bash
qwen-tts-demo --help
```

To launch the demo, you can use the following commands:

```bash
# CustomVoice model
qwen-tts-demo Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice --ip 0.0.0.0 --port 8000
# VoiceDesign model
qwen-tts-demo Qwen/Qwen3-TTS-12Hz-1.7B-VoiceDesign --ip 0.0.0.0 --port 8000
# Base model
qwen-tts-demo Qwen/Qwen3-TTS-12Hz-1.7B-Base --ip 0.0.0.0 --port 8000
```

And then open `http://<your-ip>:8000`, or access it via port forwarding in tools like VS Code.

#### Base Model HTTPS Notes

To avoid browser microphone permission issues after deploying the server, for Base model deployments, it is recommended/required to run the gradio service over **HTTPS** (especially when accessed remotely or behind modern browsers/gateways). Use `--ssl-certfile` and `--ssl-keyfile` to enable HTTPS. First we need to generate a private key and a self-signed cert (valid for 365 days):

```bash
openssl req -x509 -newkey rsa:2048 \
  -keyout key.pem -out cert.pem \
  -days 365 -nodes \
  -subj "/CN=localhost"
```

Then run the demo with HTTPS:

```bash
qwen-tts-demo Qwen/Qwen3-TTS-12Hz-1.7B-Base \
  --ip 0.0.0.0 --port 8000 \
  --ssl-certfile cert.pem \
  --ssl-keyfile key.pem \
  --no-ssl-verify
```

And open `https://<your-ip>:8000` to experience it. If your browser shows a warning, it’s expected for self-signed certificates. For production, use a real certificate.

### DashScope API Usage

To further explore Qwen3-TTS, we encourage you to try our DashScope API for a faster and more efficient experience. For detailed API information and documentation, please refer to the following:

| API Description | API Documentation (Mainland China) | API Documentation (International) |
|------------------|-----------------------------------|------------------------------------|
| Real-time API for Qwen3-TTS of custom voice model. | [https://help.aliyun.com/zh/model-studio/qwen-tts-realtime](https://help.aliyun.com/zh/model-studio/qwen-tts-realtime) | [https://www.alibabacloud.com/help/en/model-studio/qwen-tts-realtime](https://www.alibabacloud.com/help/en/model-studio/qwen-tts-realtime) |
| Real-time API for Qwen3-TTS of voice clone model. | [https://help.aliyun.com/zh/model-studio/qwen-tts-voice-cloning](https://help.aliyun.com/zh/model-studio/qwen-tts-voice-cloning) | [https://www.alibabacloud.com/help/en/model-studio/qwen-tts-voice-cloning](https://www.alibabacloud.com/help/en/model-studio/qwen-tts-voice-cloning) |
| Real-time API for Qwen3-TTS of voice design model. | [https://help.aliyun.com/zh/model-studio/qwen-tts-voice-design](https://help.aliyun.com/zh/model-studio/qwen-tts-voice-design) | [https://www.alibabacloud.com/help/en/model-studio/qwen-tts-voice-design](https://www.alibabacloud.com/help/en/model-studio/qwen-tts-voice-design) |


## vLLM Usage

vLLM officially provides day-0 support for Qwen3-TTS! Welcome to use vLLM-Omni for Qwen3-TTS deployment and inference. For installation and more details, please check [vLLM-Omni official documentation](https://docs.vllm.ai/projects/vllm-omni/en/latest/getting_started/quickstart/#installation). Now only offline inference is supported. Online serving will be supported later, and vLLM-Omni will continue to offer support and optimization for Qwen3-TTS in areas such as inference speed and streaming capabilities.

### Offline Inference
You can use vLLM-Omni to inference Qwen3-TTS locally, we provide examples in [vLLM-Omni repo](https://github.com/vllm-project/vllm-omni/tree/main/examples/offline_inference/qwen3_tts) which can generate audio output:
```bash
# git clone https://github.com/vllm-project/vllm-omni.git

# cd vllm-omni/examples/offline_inference/qwen3_tts

# Run a single sample with CustomVoice task
python end2end.py --query-type CustomVoice

# Batch sample (multiple prompts in one run) with CustomVoice task:
python end2end.py --query-type CustomVoice --use-batch-sample

# Run a single sample with VoiceDesign task
python end2end.py --query-type VoiceDesign

# Batch sample (multiple prompts in one run) with VoiceDesign task:
python end2end.py --query-type VoiceDesign --use-batch-sample

# Run a single sample with Base task in icl mode-tag
python end2end.py --query-type Base --mode-tag icl
```

## Evaluation

During evaluation, we ran inference for all models with `dtype=torch.bfloat16` and set `max_new_tokens=2048`. All other sampling parameters used the defaults from the checkpoint’s `generate_config.json`. For the Seed-Test and InstructTTS-Eval test sets, we set `language="auto"`, while for all other test sets we explicitly passed the corresponding `language`. The detailed results are shown below.


<details>
<summary>Speech Generation Benchmarks</summary>

*Zero-shot speech generation on the Seed-TTS test set. Performance is measured by Word Error Rate (WER, ↓), where lower is better.*

<table>
  <thead>
    <tr>
      <th style="text-align: center;">Datasets</th>
      <th style="text-align: left;">Model</th>
      <th colspan="2" style="text-align: center;">Performance</th>
    </tr>
    <tr style="border-bottom: 1px solid #ddd; border-top: 1px solid #ddd;">
      <td colspan="4" style="text-align: center;"><em>Content Consistency</em></td>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="14" style="text-align: center; vertical-align: middle;">SEED<br><em>test-zh</em> | <em>test-en</em></td>
      <td style="text-align: left;">Seed-TTS (Anastassiou et al., 2024)</td>
      <td style="text-align: center;">1.12</td>
      <td style="text-align: center;">2.25</td>
    </tr>
    <tr>
      <td style="text-align: left;">MaskGCT (Wang et al., 2024)</td>
      <td style="text-align: center;">2.27</td>
      <td style="text-align: center;">2.62</td>
    </tr>
    <tr>
      <td style="text-align: left;">E2 TTS (Eskimez et al., 2024)</td>
      <td style="text-align: center;">1.97</td>
      <td style="text-align: center;">2.19</td>
    </tr>
    <tr>
      <td style="text-align: left;">F5-TTS (Chen et al., 2024)</td>
      <td style="text-align: center;">1.56</td>
      <td style="text-align: center;">1.83</td>
    </tr>
    <tr>
      <td style="text-align: left;">Spark TTS (Wang et al., 2025)</td>
      <td style="text-align: center;">1.20</td>
      <td style="text-align: center;">1.98</td>
    </tr>
    <tr>
      <td style="text-align: left;">Llasa-8B (Ye et al., 2025b)</td>
      <td style="text-align: center;">1.59</td>
      <td style="text-align: center;">2.97</td>
    </tr>
    <tr>
      <td style="text-align: left;">KALL-E (Xia et al., 2024)</td>
      <td style="text-align: center;">0.96</td>
      <td style="text-align: center;">1.94</td>
    </tr>
    <tr>
      <td style="text-align: left;">FireRedTTS 2 (Xie et al., 2025)</td>
      <td style="text-align: center;">1.14</td>
      <td style="text-align: center;">1.95</td>
    </tr>
    <tr>
      <td style="text-align: left;">CosyVoice 3 (Du et al., 2025)</td>
      <td style="text-align: center;"><strong>0.71</strong></td>
      <td style="text-align: center;">1.45</td>
    </tr>
    <tr>
      <td style="text-align: left;">MiniMax-Speech (Zhang et al., 2025a)</td>
      <td style="text-align: center;">0.83</td>
      <td style="text-align: center;">1.65</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3-TTS-25Hz-0.6B-Base</td>
      <td style="text-align: center;">1.18</td>
      <td style="text-align: center;">1.64</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3-TTS-25Hz-1.7B-Base</td>
      <td style="text-align: center;">1.10</td>
      <td style="text-align: center;">1.49</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3-TTS-12Hz-0.6B-Base</td>
      <td style="text-align: center;">0.92</td>
      <td style="text-align: center;">1.32</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3-TTS-12Hz-1.7B-Base</td>
      <td style="text-align: center;">0.77</td>
      <td style="text-align: center;"><strong>1.24</strong></td>
    </tr>
  </tbody>
</table>

<br>

*Multilingual speech generation on the TTS multilingual test set. Performance is measured by Word Error Rate (WER, ↓) for content consistency and Cosine Similarity (SIM, ↑) for speaker similarity.*

<table>
  <thead>
    <tr>
      <th rowspan="2" style="text-align: left; vertical-align: bottom;">Language</th>
      <th colspan="2" style="text-align: center;">Qwen3-TTS-25Hz</th>
      <th colspan="2" style="text-align: center;">Qwen3-TTS-12Hz</th>
      <th rowspan="2" style="text-align: center; vertical-align: bottom;">MiniMax</th>
      <th rowspan="2" style="text-align: center; vertical-align: bottom;">ElevenLabs</th>
    </tr>
    <tr>
      <th style="text-align: center;">0.6B-Base</th>
      <th style="text-align: center;">1.7B-Base</th>
      <th style="text-align: center;">0.6B-Base</th>
      <th style="text-align: center;">1.7B-Base</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td colspan="7" style="text-align: center; border-top: 1px solid #ddd; border-bottom: 1px solid #ddd;"><em>Content Consistency</em></td>
    </tr>
    <tr>
      <td style="text-align: left;">Chinese</td>
      <td style="text-align: center;">1.108</td>
      <td style="text-align: center;"><strong>0.777</strong></td>
      <td style="text-align: center;">1.145</td>
      <td style="text-align: center;">0.928</td>
      <td style="text-align: center;">2.252</td>
      <td style="text-align: center;">16.026</td>
    </tr>
    <tr>
      <td style="text-align: left;">English</td>
      <td style="text-align: center;">1.048</td>
      <td style="text-align: center;">1.014</td>
      <td style="text-align: center;"><strong>0.836</strong></td>
      <td style="text-align: center;">0.934</td>
      <td style="text-align: center;">2.164</td>
      <td style="text-align: center;">2.339</td>
    </tr>
    <tr>
      <td style="text-align: left;">German</td>
      <td style="text-align: center;">1.501</td>
      <td style="text-align: center;">0.960</td>
      <td style="text-align: center;">1.089</td>
      <td style="text-align: center;">1.235</td>
      <td style="text-align: center;">1.906</td>
      <td style="text-align: center;"><strong>0.572</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Italian</td>
      <td style="text-align: center;">1.169</td>
      <td style="text-align: center;">1.105</td>
      <td style="text-align: center;">1.534</td>
      <td style="text-align: center;"><strong>0.948</strong></td>
      <td style="text-align: center;">1.543</td>
      <td style="text-align: center;">1.743</td>
    </tr>
    <tr>
      <td style="text-align: left;">Portuguese</td>
      <td style="text-align: center;">2.046</td>
      <td style="text-align: center;">1.778</td>
      <td style="text-align: center;">2.254</td>
      <td style="text-align: center;">1.526</td>
      <td style="text-align: center;">1.877</td>
      <td style="text-align: center;"><strong>1.331</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Spanish</td>
      <td style="text-align: center;">2.031</td>
      <td style="text-align: center;">1.491</td>
      <td style="text-align: center;">1.491</td>
      <td style="text-align: center;">1.126</td>
      <td style="text-align: center;"><strong>1.029</strong></td>
      <td style="text-align: center;">1.084</td>
    </tr>
    <tr>
      <td style="text-align: left;">Japanese</td>
      <td style="text-align: center;">4.189</td>
      <td style="text-align: center;">5.121</td>
      <td style="text-align: center;">6.404</td>
      <td style="text-align: center;">3.823</td>
      <td style="text-align: center;"><strong>3.519</strong></td>
      <td style="text-align: center;">10.646</td>
    </tr>
    <tr>
      <td style="text-align: left;">Korean</td>
      <td style="text-align: center;">2.852</td>
      <td style="text-align: center;">2.631</td>
      <td style="text-align: center;"><strong>1.741</strong></td>
      <td style="text-align: center;">1.755</td>
      <td style="text-align: center;">1.747</td>
      <td style="text-align: center;">1.865</td>
    </tr>
    <tr>
      <td style="text-align: left;">French</td>
      <td style="text-align: center;">2.852</td>
      <td style="text-align: center;"><strong>2.631</strong></td>
      <td style="text-align: center;">2.931</td>
      <td style="text-align: center;">2.858</td>
      <td style="text-align: center;">4.099</td>
      <td style="text-align: center;">5.216</td>
    </tr>
    <tr>
      <td style="text-align: left;">Russian</td>
      <td style="text-align: center;">5.957</td>
      <td style="text-align: center;">4.535</td>
      <td style="text-align: center;">4.458</td>
      <td style="text-align: center;"><strong>3.212</strong></td>
      <td style="text-align: center;">4.281</td>
      <td style="text-align: center;">3.878</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td colspan="7" style="text-align: center; border-bottom: 1px solid #ddd;"><em>Speaker Similarity</em></td>
    </tr>
    <tr>
      <td style="text-align: left;">Chinese</td>
      <td style="text-align: center;">0.797</td>
      <td style="text-align: center;">0.796</td>
      <td style="text-align: center;"><strong>0.811</strong></td>
      <td style="text-align: center;">0.799</td>
      <td style="text-align: center;">0.780</td>
      <td style="text-align: center;">0.677</td>
    </tr>
    <tr>
      <td style="text-align: left;">English</td>
      <td style="text-align: center;">0.811</td>
      <td style="text-align: center;">0.815</td>
      <td style="text-align: center;"><strong>0.829</strong></td>
      <td style="text-align: center;">0.775</td>
      <td style="text-align: center;">0.756</td>
      <td style="text-align: center;">0.613</td>
    </tr>
    <tr>
      <td style="text-align: left;">German</td>
      <td style="text-align: center;">0.749</td>
      <td style="text-align: center;">0.737</td>
      <td style="text-align: center;">0.769</td>
      <td style="text-align: center;"><strong>0.775</strong></td>
      <td style="text-align: center;">0.733</td>
      <td style="text-align: center;">0.614</td>
    </tr>
    <tr>
      <td style="text-align: left;">Italian</td>
      <td style="text-align: center;">0.722</td>
      <td style="text-align: center;">0.718</td>
      <td style="text-align: center;">0.792</td>
      <td style="text-align: center;"><strong>0.817</strong></td>
      <td style="text-align: center;">0.699</td>
      <td style="text-align: center;">0.579</td>
    </tr>
    <tr>
      <td style="text-align: left;">Portuguese</td>
      <td style="text-align: center;">0.790</td>
      <td style="text-align: center;">0.783</td>
      <td style="text-align: center;">0.794</td>
      <td style="text-align: center;"><strong>0.817</strong></td>
      <td style="text-align: center;">0.805</td>
      <td style="text-align: center;">0.711</td>
    </tr>
    <tr>
      <td style="text-align: left;">Spanish</td>
      <td style="text-align: center;">0.732</td>
      <td style="text-align: center;">0.731</td>
      <td style="text-align: center;">0.812</td>
      <td style="text-align: center;"><strong>0.814</strong></td>
      <td style="text-align: center;">0.762</td>
      <td style="text-align: center;">0.615</td>
    </tr>
    <tr>
      <td style="text-align: left;">Japanese</td>
      <td style="text-align: center;"><strong>0.810</strong></td>
      <td style="text-align: center;">0.807</td>
      <td style="text-align: center;">0.798</td>
      <td style="text-align: center;">0.788</td>
      <td style="text-align: center;">0.776</td>
      <td style="text-align: center;">0.738</td>
    </tr>
    <tr>
      <td style="text-align: left;">Korean</td>
      <td style="text-align: center;"><strong>0.824</strong></td>
      <td style="text-align: center;">0.814</td>
      <td style="text-align: center;">0.812</td>
      <td style="text-align: center;">0.799</td>
      <td style="text-align: center;">0.779</td>
      <td style="text-align: center;">0.700</td>
    </tr>
    <tr>
      <td style="text-align: left;">French</td>
      <td style="text-align: center;">0.698</td>
      <td style="text-align: center;">0.703</td>
      <td style="text-align: center;">0.700</td>
      <td style="text-align: center;"><strong>0.714</strong></td>
      <td style="text-align: center;">0.628</td>
      <td style="text-align: center;">0.535</td>
    </tr>
    <tr>
      <td style="text-align: left;">Russian</td>
      <td style="text-align: center;">0.734</td>
      <td style="text-align: center;">0.744</td>
      <td style="text-align: center;">0.781</td>
      <td style="text-align: center;"><strong>0.792</strong></td>
      <td style="text-align: center;">0.761</td>
      <td style="text-align: center;">0.676</td>
    </tr>
  </tbody>
</table>

<br>

*Cross-lingual speech generation on the Cross-Lingual benchmark. Performance is measured by Mixed Error Rate (WER for English, CER for others, ↓).*

<table>
  <thead>
    <tr>
      <th style="text-align: left;">Task</th>
      <th style="text-align: center;">Qwen3-TTS-25Hz-1.7B-Base</th>
      <th style="text-align: center;">Qwen3-TTS-12Hz-1.7B-Base</th>
      <th style="text-align: center;">CosyVoice3</th>
      <th style="text-align: center;">CosyVoice2</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="text-align: left;">en-to-zh</td>
      <td style="text-align: center;">5.66</td>
      <td style="text-align: center;"><strong>4.77</strong></td>
      <td style="text-align: center;">5.09</td>
      <td style="text-align: center;">13.5</td>
    </tr>
    <tr>
      <td style="text-align: left;">ja-to-zh</td>
      <td style="text-align: center;">3.92</td>
      <td style="text-align: center;">3.43</td>
      <td style="text-align: center;"><strong>3.05</strong></td>
      <td style="text-align: center;">48.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">ko-to-zh</td>
      <td style="text-align: center;">1.14</td>
      <td style="text-align: center;">1.08</td>
      <td style="text-align: center;"><strong>1.06</strong></td>
      <td style="text-align: center;">7.70</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td style="text-align: left;">zh-to-en</td>
      <td style="text-align: center;">2.91</td>
      <td style="text-align: center;"><strong>2.77</strong></td>
      <td style="text-align: center;">2.98</td>
      <td style="text-align: center;">6.47</td>
    </tr>
    <tr>
      <td style="text-align: left;">ja-to-en</td>
      <td style="text-align: center;">3.95</td>
      <td style="text-align: center;"><strong>3.04</strong></td>
      <td style="text-align: center;">4.20</td>
      <td style="text-align: center;">17.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">ko-to-en</td>
      <td style="text-align: center;">3.48</td>
      <td style="text-align: center;"><strong>3.09</strong></td>
      <td style="text-align: center;">4.19</td>
      <td style="text-align: center;">11.2</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td style="text-align: left;">zh-to-ja</td>
      <td style="text-align: center;">9.29</td>
      <td style="text-align: center;">8.40</td>
      <td style="text-align: center;"><strong>7.08</strong></td>
      <td style="text-align: center;">13.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">en-to-ja</td>
      <td style="text-align: center;">7.74</td>
      <td style="text-align: center;">7.21</td>
      <td style="text-align: center;"><strong>6.80</strong></td>
      <td style="text-align: center;">14.9</td>
    </tr>
    <tr>
      <td style="text-align: left;">ko-to-ja</td>
      <td style="text-align: center;">4.17</td>
      <td style="text-align: center;"><strong>3.67</strong></td>
      <td style="text-align: center;">3.93</td>
      <td style="text-align: center;">5.86</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td style="text-align: left;">zh-to-ko</td>
      <td style="text-align: center;">8.12</td>
      <td style="text-align: center;"><strong>4.82</strong></td>
      <td style="text-align: center;">14.4</td>
      <td style="text-align: center;">24.8</td>
    </tr>
    <tr>
      <td style="text-align: left;">en-to-ko</td>
      <td style="text-align: center;">6.83</td>
      <td style="text-align: center;"><strong>5.14</strong></td>
      <td style="text-align: center;">5.87</td>
      <td style="text-align: center;">21.9</td>
    </tr>
    <tr>
      <td style="text-align: left;">ja-to-ko</td>
      <td style="text-align: center;">6.86</td>
      <td style="text-align: center;"><strong>5.59</strong></td>
      <td style="text-align: center;">7.92</td>
      <td style="text-align: center;">21.5</td>
    </tr>
  </tbody>
</table>

<br>

*Controllable speech generation on InstructTTSEval. Performance is measured by Attribute Perception and Synthesis accuracy (APS), Description-Speech Consistency (DSD), and Response Precision (RP).*

<table>
  <thead>
    <tr>
      <th rowspan="2" style="text-align: left; vertical-align: bottom;">Type</th>
      <th rowspan="2" style="text-align: left; vertical-align: bottom;">Model</th>
      <th colspan="3" style="text-align: center;">InstructTTSEval-ZH</th>
      <th colspan="3" style="text-align: center;">InstructTTSEval-EN</th>
    </tr>
    <tr>
      <th style="text-align: center;">APS (↑)</th>
      <th style="text-align: center;">DSD (↑)</th>
      <th style="text-align: center;">RP (↑)</th>
      <th style="text-align: center;">APS (↑)</th>
      <th style="text-align: center;">DSD (↑)</th>
      <th style="text-align: center;">RP (↑)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="5" style="text-align: left; vertical-align: middle;"><em>Target<br>Speaker</em></td>
      <td style="text-align: left;">Gemini-flash</td>
      <td style="text-align: center;">88.2</td>
      <td style="text-align: center;"><strong>90.9</strong></td>
      <td style="text-align: center;"><strong>77.3</strong></td>
      <td style="text-align: center;"><strong>92.3</strong></td>
      <td style="text-align: center;"><strong>93.8</strong></td>
      <td style="text-align: center;"><strong>80.1</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Gemini-pro</td>
      <td style="text-align: center;"><strong>89.0</strong></td>
      <td style="text-align: center;">90.1</td>
      <td style="text-align: center;">75.5</td>
      <td style="text-align: center;">87.6</td>
      <td style="text-align: center;">86.0</td>
      <td style="text-align: center;">67.2</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3TTS-25Hz-1.7B-CustomVoice</td>
      <td style="text-align: center;">83.1</td>
      <td style="text-align: center;">75.0</td>
      <td style="text-align: center;">63.0</td>
      <td style="text-align: center;">79.0</td>
      <td style="text-align: center;">82.8</td>
      <td style="text-align: center;">69.3</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3TTS-12Hz-1.7B-CustomVoice</td>
      <td style="text-align: center;">83.0</td>
      <td style="text-align: center;">77.8</td>
      <td style="text-align: center;">61.2</td>
      <td style="text-align: center;">77.3</td>
      <td style="text-align: center;">77.1</td>
      <td style="text-align: center;">63.7</td>
    </tr>
    <tr>
      <td style="text-align: left;">GPT-4o-mini-tts</td>
      <td style="text-align: center;">54.9</td>
      <td style="text-align: center;">52.3</td>
      <td style="text-align: center;">46.0</td>
      <td style="text-align: center;">76.4</td>
      <td style="text-align: center;">74.3</td>
      <td style="text-align: center;">54.8</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td rowspan="9" style="text-align: left; vertical-align: middle;"><em>Voice<br>Design</em></td>
      <td style="text-align: left;">Qwen3TTS-12Hz-1.7B-VD</td>
      <td style="text-align: center;"><strong>85.2</strong></td>
      <td style="text-align: center;"><strong>81.1</strong></td>
      <td style="text-align: center;"><strong>65.1</strong></td>
      <td style="text-align: center;">82.9</td>
      <td style="text-align: center;"><strong>82.4</strong></td>
      <td style="text-align: center;"><strong>68.4</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Mimo-Audio-7B-Instruct (Zhang et al., 2025b)</td>
      <td style="text-align: center;">75.7</td>
      <td style="text-align: center;">74.3</td>
      <td style="text-align: center;">61.5</td>
      <td style="text-align: center;">80.6</td>
      <td style="text-align: center;">77.6</td>
      <td style="text-align: center;">59.5</td>
    </tr>
    <tr>
      <td style="text-align: left;">VoiceSculptor (Hu et al., 2026)</td>
      <td style="text-align: center;">75.7</td>
      <td style="text-align: center;">64.7</td>
      <td style="text-align: center;">61.5</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">Hume</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;"><strong>83.0</strong></td>
      <td style="text-align: center;">75.3</td>
      <td style="text-align: center;">54.3</td>
    </tr>
    <tr>
      <td style="text-align: left;">VoxInstruct (Zhou et al., 2024)</td>
      <td style="text-align: center;">47.5</td>
      <td style="text-align: center;">52.3</td>
      <td style="text-align: center;">42.6</td>
      <td style="text-align: center;">54.9</td>
      <td style="text-align: center;">57.0</td>
      <td style="text-align: center;">39.3</td>
    </tr>
    <tr>
      <td style="text-align: left;">Parler-tts-mini (Lyth & King, 2024)</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">63.4</td>
      <td style="text-align: center;">48.7</td>
      <td style="text-align: center;">28.6</td>
    </tr>
    <tr>
      <td style="text-align: left;">Parler-tts-large (Lyth & King, 2024)</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">60.0</td>
      <td style="text-align: center;">45.9</td>
      <td style="text-align: center;">31.2</td>
    </tr>
    <tr>
      <td style="text-align: left;">PromptTTS (Guo et al., 2023)</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">64.3</td>
      <td style="text-align: center;">47.2</td>
      <td style="text-align: center;">31.4</td>
    </tr>
    <tr>
      <td style="text-align: left;">PromptStyle (Liu et al., 2023)</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">57.4</td>
      <td style="text-align: center;">46.4</td>
      <td style="text-align: center;">30.9</td>
    </tr>
  </tbody>
</table>

<br>

*Target-Speaker Multilingual Speech Generation on the TTS multilingual test set. Performance is measured by Word Error Rate (WER, ↓).*

<table>
  <thead>
    <tr>
      <th rowspan="2" style="text-align: left; vertical-align: bottom;">Language</th>
      <th colspan="2" style="text-align: center;">Qwen3-TTS-25Hz</th>
      <th colspan="2" style="text-align: center;">Qwen3-TTS-12Hz</th>
      <th rowspan="2" style="text-align: center; vertical-align: bottom;">GPT-4o-Audio<br>Preview</th>
    </tr>
    <tr>
      <th style="text-align: center;">0.6B-CustomVoice</th>
      <th style="text-align: center;">1.7B-CustomVoice</th>
      <th style="text-align: center;">0.6B-CustomVoice</th>
      <th style="text-align: center;">1.7B-CustomVoice</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="text-align: left;">Chinese</td>
      <td style="text-align: center;">0.874</td>
      <td style="text-align: center;"><strong>0.708</strong></td>
      <td style="text-align: center;">0.944</td>
      <td style="text-align: center;">0.903</td>
      <td style="text-align: center;">3.519</td>
    </tr>
    <tr>
      <td style="text-align: left;">English</td>
      <td style="text-align: center;">1.332</td>
      <td style="text-align: center;">0.936</td>
      <td style="text-align: center;">1.188</td>
      <td style="text-align: center;"><strong>0.899</strong></td>
      <td style="text-align: center;">2.197</td>
    </tr>
    <tr>
      <td style="text-align: left;">German</td>
      <td style="text-align: center;">0.990</td>
      <td style="text-align: center;"><strong>0.634</strong></td>
      <td style="text-align: center;">2.722</td>
      <td style="text-align: center;">1.057</td>
      <td style="text-align: center;">1.161</td>
    </tr>
    <tr>
      <td style="text-align: left;">Italian</td>
      <td style="text-align: center;">1.861</td>
      <td style="text-align: center;">1.271</td>
      <td style="text-align: center;">2.545</td>
      <td style="text-align: center;">1.362</td>
      <td style="text-align: center;"><strong>1.194</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Portuguese</td>
      <td style="text-align: center;">1.728</td>
      <td style="text-align: center;">1.854</td>
      <td style="text-align: center;">3.219</td>
      <td style="text-align: center;">2.681</td>
      <td style="text-align: center;"><strong>1.504</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Spanish</td>
      <td style="text-align: center;">1.309</td>
      <td style="text-align: center;">1.284</td>
      <td style="text-align: center;"><strong>1.154</strong></td>
      <td style="text-align: center;">1.330</td>
      <td style="text-align: center;">4.000</td>
    </tr>
    <tr>
      <td style="text-align: left;">Japanese</td>
      <td style="text-align: center;"><strong>3.875</strong></td>
      <td style="text-align: center;">4.518</td>
      <td style="text-align: center;">6.877</td>
      <td style="text-align: center;">4.924</td>
      <td style="text-align: center;">5.001</td>
    </tr>
    <tr>
      <td style="text-align: left;">Korean</td>
      <td style="text-align: center;">2.202</td>
      <td style="text-align: center;">2.274</td>
      <td style="text-align: center;">3.053</td>
      <td style="text-align: center;"><strong>1.741</strong></td>
      <td style="text-align: center;">2.763</td>
    </tr>
    <tr>
      <td style="text-align: left;">French</td>
      <td style="text-align: center;">3.865</td>
      <td style="text-align: center;"><strong>3.080</strong></td>
      <td style="text-align: center;">3.841</td>
      <td style="text-align: center;">3.781</td>
      <td style="text-align: center;">3.605</td>
    </tr>
    <tr>
      <td style="text-align: left;">Russian</td>
      <td style="text-align: center;">6.529</td>
      <td style="text-align: center;"><strong>4.444</strong></td>
      <td style="text-align: center;">5.809</td>
      <td style="text-align: center;">4.734</td>
      <td style="text-align: center;">5.250</td>
    </tr>
  </tbody>
</table>

<br>

*Long speech generation results. Performance is measured by Word Error Rate (WER, ↓).*

<table>
  <thead>
    <tr>
      <th style="text-align: center;">Datasets</th>
      <th style="text-align: left;">Model</th>
      <th colspan="2" style="text-align: center;">Performance</th>
    </tr>
    <tr style="border-bottom: 1px solid #ddd; border-top: 1px solid #ddd;">
      <td colspan="4" style="text-align: center;"><em>Content Consistency</em></td>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="5" style="text-align: center; vertical-align: middle;"><em>long-zh</em> | <em>long-en</em></td>
      <td style="text-align: left;">Higgs-Audio-v2 (chunk) (Boson AI, 2025)</td>
      <td style="text-align: center;">5.505</td>
      <td style="text-align: center;">6.917</td>
    </tr>
    <tr>
      <td style="text-align: left;">VibeVoice (Peng et al., 2025)</td>
      <td style="text-align: center;">22.619</td>
      <td style="text-align: center;">1.780</td>
    </tr>
    <tr>
      <td style="text-align: left;">VoxCPM (Zhou et al., 2025)</td>
      <td style="text-align: center;">4.835</td>
      <td style="text-align: center;">7.474</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3-TTS-25Hz-1.7B-CustomVoice</td>
      <td style="text-align: center;"><strong>1.517</strong></td>
      <td style="text-align: center;"><strong>1.225</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen3-TTS-12Hz-1.7B-CustomVoice</td>
      <td style="text-align: center;">2.356</td>
      <td style="text-align: center;">2.812</td>
    </tr>
  </tbody>
</table>
</details>


<details>
<summary>Speech Tokenizer Benchmarks</summary>

*Comparison between different supervised semantic speech tokenizers on ASR Task.*

<table>
  <thead>
    <tr>
      <th style="text-align: left;">Model</th>
      <th style="text-align: center;">Codebook Size</th>
      <th style="text-align: center;">FPS</th>
      <th style="text-align: center;">C.V. EN</th>
      <th style="text-align: center;">C.V. CN</th>
      <th style="text-align: center;">Fluers EN</th>
      <th style="text-align: center;">Fluers CN</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="text-align: left;">S3 Tokenizer(VQ) (Du et al., 2024a)</td>
      <td style="text-align: center;">4096</td>
      <td style="text-align: center;">50</td>
      <td style="text-align: center;">12.06</td>
      <td style="text-align: center;">15.38</td>
      <td style="text-align: center;">-</td>
      <td style="text-align: center;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">S3 Tokenizer(VQ) (Du et al., 2024a)</td>
      <td style="text-align: center;">4096</td>
      <td style="text-align: center;">25</td>
      <td style="text-align: center;">11.56</td>
      <td style="text-align: center;">18.26</td>
      <td style="text-align: center;">7.65</td>
      <td style="text-align: center;">5.03</td>
    </tr>
    <tr>
      <td style="text-align: left;">S3 Tokenizer(FSQ) (Du et al., 2024a)</td>
      <td style="text-align: center;">6561</td>
      <td style="text-align: center;">25</td>
      <td style="text-align: center;">10.67</td>
      <td style="text-align: center;"><strong>7.29</strong></td>
      <td style="text-align: center;">6.58</td>
      <td style="text-align: center;">4.43</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen-TTS-Tokenizer-25Hz (Stage 1)</td>
      <td style="text-align: center;">32768</td>
      <td style="text-align: center;">25</td>
      <td style="text-align: center;"><strong>7.51</strong></td>
      <td style="text-align: center;">10.73</td>
      <td style="text-align: center;"><strong>3.07</strong></td>
      <td style="text-align: center;"><strong>4.23</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen-TTS-Tokenizer-25Hz (Stage 2)</td>
      <td style="text-align: center;">32768</td>
      <td style="text-align: center;">25</td>
      <td style="text-align: center;">10.40</td>
      <td style="text-align: center;">14.99</td>
      <td style="text-align: center;">4.14</td>
      <td style="text-align: center;">4.67</td>
    </tr>
  </tbody>
</table>

<br>

*Comparison between different semantic-related speech tokenizers.*

<table>
  <thead>
    <tr>
      <th style="text-align: left;">Model</th>
      <th style="text-align: center;">NQ</th>
      <th style="text-align: center;">Codebook Size</th>
      <th style="text-align: center;">FPS</th>
      <th style="text-align: center;">PESQ_WB</th>
      <th style="text-align: center;">PESQ_NB</th>
      <th style="text-align: center;">STOI</th>
      <th style="text-align: center;">UTMOS</th>
      <th style="text-align: center;">SIM</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="text-align: left;">SpeechTokenizer (Zhang et al., 2023a)</td>
      <td style="text-align: center;">8</td>
      <td style="text-align: center;">1024</td>
      <td style="text-align: center;">50</td>
      <td style="text-align: center;">2.60</td>
      <td style="text-align: center;">3.05</td>
      <td style="text-align: center;">0.92</td>
      <td style="text-align: center;">3.90</td>
      <td style="text-align: center;">0.85</td>
    </tr>
    <tr>
      <td style="text-align: left;">X-codec (Ye et al., 2025a)</td>
      <td style="text-align: center;">2</td>
      <td style="text-align: center;">1024</td>
      <td style="text-align: center;">50</td>
      <td style="text-align: center;">2.68</td>
      <td style="text-align: center;">3.27</td>
      <td style="text-align: center;">0.86</td>
      <td style="text-align: center;">4.11</td>
      <td style="text-align: center;">0.84</td>
    </tr>
    <tr>
      <td style="text-align: left;">X-codec 2 (Ye et al., 2025b)</td>
      <td style="text-align: center;">1</td>
      <td style="text-align: center;">65536</td>
      <td style="text-align: center;">50</td>
      <td style="text-align: center;">2.43</td>
      <td style="text-align: center;">3.04</td>
      <td style="text-align: center;">0.92</td>
      <td style="text-align: center;">4.13</td>
      <td style="text-align: center;">0.82</td>
    </tr>
    <tr>
      <td style="text-align: left;">XY-Tokenizer (Gong et al., 2025)</td>
      <td style="text-align: center;">8</td>
      <td style="text-align: center;">1024</td>
      <td style="text-align: center;">12.5</td>
      <td style="text-align: center;">2.41</td>
      <td style="text-align: center;">3.00</td>
      <td style="text-align: center;">0.91</td>
      <td style="text-align: center;">3.98</td>
      <td style="text-align: center;">0.83</td>
    </tr>
    <tr>
      <td style="text-align: left;">Mimi (Défossez et al., 2024)</td>
      <td style="text-align: center;">16</td>
      <td style="text-align: center;">2048</td>
      <td style="text-align: center;">12.5</td>
      <td style="text-align: center;">2.88</td>
      <td style="text-align: center;">3.42</td>
      <td style="text-align: center;">0.94</td>
      <td style="text-align: center;">3.87</td>
      <td style="text-align: center;">0.87</td>
    </tr>
    <tr>
      <td style="text-align: left;">FireredTTS 2 Tokenizer (Xie et al., 2025)</td>
      <td style="text-align: center;">16</td>
      <td style="text-align: center;">2048</td>
      <td style="text-align: center;">12.5</td>
      <td style="text-align: center;">2.73</td>
      <td style="text-align: center;">3.28</td>
      <td style="text-align: center;">0.94</td>
      <td style="text-align: center;">3.88</td>
      <td style="text-align: center;">0.87</td>
    </tr>
    <tr>
      <td style="text-align: left;">Qwen-TTS-Tokenizer-12Hz</td>
      <td style="text-align: center;">16</td>
      <td style="text-align: center;">2048</td>
      <td style="text-align: center;">12.5</td>
      <td style="text-align: center;"><strong>3.21</strong></td>
      <td style="text-align: center;"><strong>3.68</strong></td>
      <td style="text-align: center;"><strong>0.96</strong></td>
      <td style="text-align: center;"><strong>4.16</strong></td>
      <td style="text-align: center;"><strong>0.95</strong></td>
    </tr>
  </tbody>
</table>

</details>


## Citation

If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)

```BibTeX
@article{Qwen3-TTS,
  title={Qwen3-TTS Technical Report},
  author={Hangrui Hu and Xinfa Zhu and Ting He and Dake Guo and Bin Zhang and Xiong Wang and Zhifang Guo and Ziyue Jiang and Hongkun Hao and Zishan Guo and Xinyu Zhang and Pei Zhang and Baosong Yang and Jin Xu and Jingren Zhou and Junyang Lin},
  journal={arXiv preprint arXiv:2601.15621},
  year={2026}
}
```

<br>