README.md 1.24 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# 下载DCU支持的cupy 


```
wget https://cancon.hpccube.com:65024/directlink/1/DTK-24.04.1_apps-20240611/NFS3.2_CentOS7.6/cupy_v12.0.0b3_py38_nfs3.2_DTK24.04_29Mar2024.tar.gz
tar -zxvf cupy_v12.0.0b3_py38_nfs3.2_DTK24.04_29Mar2024.tar.gz
```

# 建立conda 环境



```
conda create -n  scikit  python=3.8
pip install cupy_v12.0.0b3_py38_nfs3.2_DTK24.04_29Mar2024/dist-py38/cupy-12.0.0b3-cp38-cp38-linux_x86_64.whl
pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple 

```

# 执行测试

```
import cupy as cp
import numpy as np
from skimage import data
from skimage import filters
from skimage import img_as_float

# 加载示例图像
image = img_as_float(data.coins())

# 将图像从NumPy数组转换为CuPy数组,以利用GPU
image_gpu = cp.array(image)

# 定义一个使用GPU的函数(例如,应用高斯滤波器)
def gaussian_filter_gpu(image, sigma=1):
    from cupyx.scipy.ndimage import gaussian_filter
    return gaussian_filter(image, sigma)

# 应用高斯滤波器
filtered_image_gpu = gaussian_filter_gpu(image_gpu, sigma=1)

# 将结果转换回NumPy数组
filtered_image = cp.asnumpy(filtered_image_gpu)

# 测试输出
print("Original Image Shape:", image.shape)
print("Filtered Image Shape:", filtered_image.shape)
```