rocm_bandwidth_test_topology.cpp 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
////////////////////////////////////////////////////////////////////////////////
//
// The University of Illinois/NCSA
// Open Source License (NCSA)
// 
// Copyright (c) 2014-2015, Advanced Micro Devices, Inc. All rights reserved.
// 
// Developed by:
// 
//                 AMD Research and AMD HSA Software Development
// 
//                 Advanced Micro Devices, Inc.
// 
//                 www.amd.com
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// 
//  - Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimers.
//  - Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimers in
//    the documentation and/or other materials provided with the distribution.
//  - Neither the names of Advanced Micro Devices, Inc,
//    nor the names of its contributors may be used to endorse or promote
//    products derived from this Software without specific prior written
//    permission.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS WITH THE SOFTWARE.
//
////////////////////////////////////////////////////////////////////////////////

#include "common.hpp"
#include "rocm_bandwidth_test.hpp"

46
47
48
49
#include <iomanip>
#include <sstream>
#include <string>

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// @brief: Helper method to iterate throught the memory pools of
// an agent and discover its properties
hsa_status_t MemPoolInfo(hsa_amd_memory_pool_t pool, void* data) {

  hsa_status_t status;
  RocmBandwidthTest* asyncDrvr = reinterpret_cast<RocmBandwidthTest*>(data);

  // Query pools' segment, report only pools from global segment
  hsa_amd_segment_t segment;
  status = hsa_amd_memory_pool_get_info(pool,
                   HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment);
  ErrorCheck(status);
  if (HSA_AMD_SEGMENT_GLOBAL != segment) {
    return HSA_STATUS_SUCCESS;
  }

  // Determine if allocation is allowed in this pool
  // Report only pools that allow an alloction by user
  bool alloc = false;
  status = hsa_amd_memory_pool_get_info(pool,
                   HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, &alloc);
  ErrorCheck(status);
  if (alloc != true) {
    return HSA_STATUS_SUCCESS;
  }

  // Query the max allocatable size
  size_t max_size = 0;
  status = hsa_amd_memory_pool_get_info(pool,
                   HSA_AMD_MEMORY_POOL_INFO_SIZE, &max_size);
  ErrorCheck(status);

  // Determine if the pools is accessible to all agents
  bool access_to_all = false;
  status = hsa_amd_memory_pool_get_info(pool,
                HSA_AMD_MEMORY_POOL_INFO_ACCESSIBLE_BY_ALL, &access_to_all);
  ErrorCheck(status);

  // Determine type of access to owner agent
  hsa_amd_memory_pool_access_t owner_access;
  hsa_agent_t agent = asyncDrvr->agent_list_.back().agent_;
  status = hsa_amd_agent_memory_pool_get_info(agent, pool,
                         HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &owner_access);
  ErrorCheck(status);

  // Determine if the pool is fine-grained or coarse-grained
  uint32_t flag = 0;
  status = hsa_amd_memory_pool_get_info(pool,
                   HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &flag);
  ErrorCheck(status);
  bool is_kernarg = (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & flag);
  bool is_fine_grained = (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & flag);

  // Update the pool handle for system memory if kernarg is true
  if (is_kernarg) {
    asyncDrvr->sys_pool_ = pool;
  }

  // Consult user request and add either fine-grained or
  // coarse-grained memory pools if agent is CPU
  agent_info_t& agent_info = asyncDrvr->agent_list_.back();
  if (agent_info.device_type_ == HSA_DEVICE_TYPE_CPU) {
    if (asyncDrvr->skip_fine_grain_ != NULL) {
      if (is_fine_grained == true) {
        return HSA_STATUS_SUCCESS;
      }
    } else {
      if (is_fine_grained == false) {
        return HSA_STATUS_SUCCESS;
      }
    }
  }
  // hsa_device_type_t device_type;
  // status = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
  // ErrorCheck(status);

  // Create an instance of agent_pool_info and add it to the list
  pool_info_t pool_info(agent, asyncDrvr->agent_index_, pool,
                        segment, max_size, asyncDrvr->pool_index_,
                        is_fine_grained, is_kernarg,
                        access_to_all, owner_access);
  asyncDrvr->pool_list_.push_back(pool_info);

  // Create an agent_pool_infot and add it to its list
  asyncDrvr->agent_pool_list_[asyncDrvr->agent_index_].pool_list.push_back(pool_info);
  asyncDrvr->pool_index_++;

  return HSA_STATUS_SUCCESS;
}

140
141
142
143
144
145
146
147
148
149
150
void PopulateBDF(uint32_t bdf_id, agent_info_t *agent_info) {

  uint8_t func_id = (bdf_id & 0x00000003);
  uint8_t dev_id = ((bdf_id & 0x000000F8) >> 3);
  uint8_t bus_id = ((bdf_id & 0x0000FF00) >> 8);
  std::stringstream stream;
  stream << std::setfill('0') << std::setw(sizeof(uint8_t) * 2);
  stream << std::hex << +bus_id << ":" << +dev_id << "." << +func_id;
  strcpy(agent_info->bdf_id_, (stream.str()).c_str());
}

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// @brief: Helper method to iterate throught the agents of
// a system and discover its properties
hsa_status_t AgentInfo(hsa_agent_t agent, void* data) {

  RocmBandwidthTest* asyncDrvr = reinterpret_cast<RocmBandwidthTest*>(data);

  // Get the name of the agent
  char agent_name[64];
  hsa_status_t status;
  status = hsa_agent_get_info(agent, HSA_AGENT_INFO_NAME, agent_name);
  ErrorCheck(status);

  // Get device type
  hsa_device_type_t device_type;
  status = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
  ErrorCheck(status);

  // Capture the handle of Cpu agent
  if (device_type == HSA_DEVICE_TYPE_CPU) {
    asyncDrvr->cpu_agent_ = agent;
    asyncDrvr->cpu_index_ = asyncDrvr->agent_index_;
  }

  // Instantiate an instance of agent_info_t and populate its name
175
  // and BDF fields before adding it to the list of agent_info_t objects
176
177
178
179
  agent_info_t agent_info(agent, asyncDrvr->agent_index_, device_type);
  status = hsa_agent_get_info(agent,
                      (hsa_agent_info_t)HSA_AMD_AGENT_INFO_PRODUCT_NAME,
                      (void *)&agent_info.name_[0]);
180
181
182
183
184
185
186
  if (device_type == HSA_DEVICE_TYPE_GPU) {
    uint32_t bdf_id = 0;
    status = hsa_agent_get_info(agent,
                      (hsa_agent_info_t)HSA_AMD_AGENT_INFO_BDFID,
                      (void *)&bdf_id);
    PopulateBDF(bdf_id, &agent_info);
  }
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  asyncDrvr->agent_list_.push_back(agent_info);

  // Contruct an new agent_pool_info structure and add it to the list
  agent_pool_info node;
  node.agent = asyncDrvr->agent_list_.back();
  asyncDrvr->agent_pool_list_.push_back(node);

  status = hsa_amd_agent_iterate_memory_pools(agent, MemPoolInfo, asyncDrvr);
  asyncDrvr->agent_index_++;

  return HSA_STATUS_SUCCESS;
}

void RocmBandwidthTest::PopulateAccessMatrix() {

  // Allocate memory to hold access lists
  access_matrix_ = new uint32_t[agent_index_ * agent_index_]();

  hsa_status_t status;
  uint32_t size = pool_list_.size();
  for (uint32_t src_idx = 0; src_idx < size; src_idx++) {

    // Determine if the pool belongs to Cpu and is coarse-grained
    uint32_t src_dev_idx = pool_list_[src_idx].agent_index_;
    hsa_device_type_t src_dev_type = agent_list_[src_dev_idx].device_type_;

    /*
    * This block of code makes sense only if both Fine and Coarse
    * grained memory pools are captured. This does not make sense
    * if only of them is captured
    if (src_dev_type == HSA_DEVICE_TYPE_CPU) {
      bool src_fine_grained =  pool_list_[src_idx].is_fine_grained_;
      if (src_fine_grained == false) {
        continue;
      }
    }
    */

    hsa_agent_t src_agent = pool_list_[src_idx].owner_agent_;
    hsa_amd_memory_pool_t src_pool = pool_list_[src_idx].pool_;

    for (uint32_t dst_idx = 0; dst_idx < size; dst_idx++) {

      // Determine if the pool belongs to Cpu and is coarse-grained
      uint32_t dst_dev_idx = pool_list_[dst_idx].agent_index_;
      hsa_device_type_t dst_dev_type = agent_list_[dst_dev_idx].device_type_;

      /*
       * This block of code makes sense only if both Fine and Coarse
       * grained memory pools are captured. This does not make sense
       * if only of them is captured
      if (dst_dev_type == HSA_DEVICE_TYPE_CPU) {
        bool dst_fine_grained =  pool_list_[dst_idx].is_fine_grained_;
        if (dst_fine_grained == false) {
          continue;
        }
      }
      */
      hsa_agent_t dst_agent = pool_list_[dst_idx].owner_agent_;
      hsa_amd_memory_pool_t dst_pool = pool_list_[dst_idx].pool_;

      // Determine if accessibility to dst pool for src agent is not denied
      hsa_amd_memory_pool_access_t access1;
      status = hsa_amd_agent_memory_pool_get_info(src_agent, dst_pool,
                             HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access1);
      ErrorCheck(status);

      // Determine if accessibility to src pool for dst agent is not denied
      hsa_amd_memory_pool_access_t access2;
      status = hsa_amd_agent_memory_pool_get_info(dst_agent, src_pool,
                             HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access2);

      // Access between the two agents is Non-Existent
      if ((access1 == HSA_AMD_MEMORY_POOL_ACCESS_NEVER_ALLOWED) &&
          (access2 == HSA_AMD_MEMORY_POOL_ACCESS_NEVER_ALLOWED)) {
        access_matrix_[(src_dev_idx * agent_index_) + dst_dev_idx] = 0;
      }

      // Access between the two agents is Unidirectional
      if ((access1 == HSA_AMD_MEMORY_POOL_ACCESS_NEVER_ALLOWED) ||
          (access2 == HSA_AMD_MEMORY_POOL_ACCESS_NEVER_ALLOWED)) {
        if ((src_dev_type == HSA_DEVICE_TYPE_GPU) &&
            (dst_dev_type == HSA_DEVICE_TYPE_GPU)) {
          access_matrix_[(src_dev_idx * agent_index_) + dst_dev_idx] = 0;
        } else {
          access_matrix_[(src_dev_idx * agent_index_) + dst_dev_idx] = 1;
        }
      }

      // Access between the two agents is Bidirectional
      if ((access1 != HSA_AMD_MEMORY_POOL_ACCESS_NEVER_ALLOWED) &&
          (access2 != HSA_AMD_MEMORY_POOL_ACCESS_NEVER_ALLOWED)) {
        access_matrix_[(src_dev_idx * agent_index_) + dst_dev_idx] = 2;
      }
    }
  }
}

void RocmBandwidthTest::DiscoverTopology() {

  // Populate the lists of agents and pools
  err_ = hsa_iterate_agents(AgentInfo, this);

  // Populate the access matrix
  PopulateAccessMatrix();
  DiscoverLinkWeight();
}

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
void RocmBandwidthTest::BindLinkWeight(uint32_t idx1, uint32_t idx2) {
  
  // Agent has no pools so no need to look for numa distance
  if (agent_pool_list_[idx2].pool_list.size() == 0) {
    return;
  }
  
  uint32_t hops = 0;
  hsa_agent_t agent1 = agent_list_[idx1].agent_;
  hsa_amd_memory_pool_t& pool = agent_pool_list_[idx2].pool_list[0].pool_;
  err_ = hsa_amd_agent_memory_pool_get_info(agent1, pool,
                   HSA_AMD_AGENT_MEMORY_POOL_INFO_NUM_LINK_HOPS, &hops);
  if (hops < 1) {
    link_matrix_[(idx1 * agent_index_) + idx2] = 0xFFFFFFFF;
    return;
  }

  hsa_amd_memory_pool_link_info_t *link_info;
  uint32_t link_info_sz = hops * sizeof(hsa_amd_memory_pool_link_info_t);
  link_info = (hsa_amd_memory_pool_link_info_t *)malloc(link_info_sz);
  memset(link_info, 0, (hops * sizeof(hsa_amd_memory_pool_link_info_t)));
  err_ = hsa_amd_agent_memory_pool_get_info(agent1, pool,
                 HSA_AMD_AGENT_MEMORY_POOL_INFO_LINK_INFO, link_info);
  link_matrix_[(idx1 *agent_index_) + idx2] = 0;
  for(uint32_t hopIdx = 0; hopIdx < hops; hopIdx++) {
    link_matrix_[(idx1 *agent_index_) + idx2] += (link_info[hopIdx]).numa_distance;

  }
  free(link_info); 
}

326
327
328
329
330
331
332
333
334
335
336
337
338
339
void RocmBandwidthTest::DiscoverLinkWeight() {

  // Allocate space if it is first time
  if (link_matrix_ == NULL) {
    link_matrix_ = new uint32_t[agent_index_ * agent_index_]();
  }

  agent_info_t agent_info;
  for (uint32_t idx1 = 0; idx1 < agent_index_; idx1++) {
    for (uint32_t idx2 = 0; idx2 < agent_index_; idx2++) {
      if (idx1 == idx2) {
        link_matrix_[(idx1 *agent_index_) + idx2] = 0;
        continue;
      }
340
      BindLinkWeight(idx1, idx2);
341
342
343
344
    }
  }
}