rocm_bandwidth_test.cpp 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
////////////////////////////////////////////////////////////////////////////////
//
// The University of Illinois/NCSA
// Open Source License (NCSA)
// 
// Copyright (c) 2014-2015, Advanced Micro Devices, Inc. All rights reserved.
// 
// Developed by:
// 
//                 AMD Research and AMD HSA Software Development
// 
//                 Advanced Micro Devices, Inc.
// 
//                 www.amd.com
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// 
//  - Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimers.
//  - Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimers in
//    the documentation and/or other materials provided with the distribution.
//  - Neither the names of Advanced Micro Devices, Inc,
//    nor the names of its contributors may be used to endorse or promote
//    products derived from this Software without specific prior written
//    permission.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS WITH THE SOFTWARE.
//
////////////////////////////////////////////////////////////////////////////////

#include "common.hpp"
#include "rocm_bandwidth_test.hpp"

#include <stdlib.h>
#include <assert.h>
#include <algorithm>
#include <unistd.h>
#include <cctype>
#include <sstream>
52
#include <limits>
53
54

// The values are in megabytes at allocation time
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
const size_t RocmBandwidthTest::SIZE_LIST[] = { 1 * 1024,
                                2 * 1024, 4 * 1024, 8 * 1024,
                                16 * 1024, 32 * 1024, 64 * 1024,
                                128 * 1024, 256 * 1024, 512 * 1024,
                                1 * 1024 * 1024, 2 * 1024 * 1024,
                                4 * 1024 * 1024, 8 * 1024 * 1024,
                                16 * 1024 * 1024, 32 * 1024 * 1024,
                                64 * 1024 * 1024, 128 * 1024 * 1024,
                                256 * 1024 * 1024, 512 * 1024  * 1024};

const size_t RocmBandwidthTest::LATENCY_SIZE_LIST[] = { 1,
                                2, 4, 8,
                                16, 32, 64,
                                128, 256, 512,
                                1 * 1024, 2 * 1024,
                                4 * 1024, 8 * 1024,
                                16 * 1024, 32 * 1024,
                                64 * 1024, 128 * 1024,
                                256 * 1024, 512 * 1024 };
74
75

uint32_t RocmBandwidthTest::GetIterationNum() {
76
  return (validate_) ? 1 : (num_iteration_ * 1.2 + 1);
77
78
79
80
81
82
83
84
85
86
87
88
89
90
}

void RocmBandwidthTest::AcquireAccess(hsa_agent_t agent, void* ptr) {
  err_ = hsa_amd_agents_allow_access(1, &agent, NULL, ptr);
  ErrorCheck(err_);
}

void RocmBandwidthTest::AcquirePoolAcceses(uint32_t src_dev_idx,
                                   hsa_agent_t src_agent, void* src,
                                   uint32_t dst_dev_idx,
                                   hsa_agent_t dst_agent, void* dst) {

  // determine which one is a cpu and call acquire on the other agent
  hsa_device_type_t src_dev_type = agent_list_[src_dev_idx].device_type_;
91
  hsa_device_type_t dst_dev_type = agent_list_[dst_dev_idx].device_type_;
92
  if (src_dev_type == HSA_DEVICE_TYPE_GPU) {
93
    AcquireAccess(src_agent, dst);
94
  } else if (dst_dev_type == HSA_DEVICE_TYPE_GPU) {
95
    AcquireAccess(dst_agent, src);
96
  }
97
98
  
  return;
99
100
}

101
void RocmBandwidthTest::AllocateHostBuffers(size_t size,
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                                    uint32_t src_dev_idx,
                                    uint32_t dst_dev_idx,
                                    void*& src, void*& dst,
                                    void* buf_src, void* buf_dst,
                                    hsa_agent_t src_agent, hsa_agent_t dst_agent,
                                    hsa_signal_t& signal) {

  // Allocate host buffers and setup accessibility for copy operation
  err_ = hsa_amd_memory_pool_allocate(sys_pool_, size, 0, (void**)&src);
  ErrorCheck(err_);

  // Gain access to the pools
  AcquirePoolAcceses(cpu_index_, cpu_agent_, src,
                     src_dev_idx, src_agent, buf_src);

  err_ = hsa_amd_memory_pool_allocate(sys_pool_, size, 0, (void**)&dst);
  ErrorCheck(err_);

  // Gain access to the pools
  AcquirePoolAcceses(dst_dev_idx, dst_agent, buf_dst,
                     cpu_index_, cpu_agent_, dst);

  // Initialize host buffers to a determinate value
  memset(src, 0x23, size);
  memset(dst, 0x00, size);
  
  // Create a signal to wait on copy operation
  // @TODO: replace it with a signal pool call
  err_ = hsa_signal_create(1, 0, NULL, &signal);
  ErrorCheck(err_);

  return;
}

136
void RocmBandwidthTest::AllocateCopyBuffers(size_t size,
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                        uint32_t src_dev_idx, uint32_t dst_dev_idx,
                        void*& src, hsa_amd_memory_pool_t src_pool,
                        void*& dst, hsa_amd_memory_pool_t dst_pool,
                        hsa_agent_t src_agent, hsa_agent_t dst_agent,
                        hsa_signal_t& signal) {

  // Allocate buffers in src and dst pools for forward copy
  err_ = hsa_amd_memory_pool_allocate(src_pool, size, 0, &src);
  ErrorCheck(err_);
  err_ = hsa_amd_memory_pool_allocate(dst_pool, size, 0, &dst);
  ErrorCheck(err_);

  // Create a signal to wait on copy operation
  // @TODO: replace it with a signal pool call
  err_ = hsa_signal_create(1, 0, NULL, &signal);
  ErrorCheck(err_);

  return AcquirePoolAcceses(src_dev_idx, src_agent, src,
                            dst_dev_idx, dst_agent, dst);
}

void RocmBandwidthTest::ReleaseBuffers(bool bidir,
                               void* src_fwd, void* src_rev,
                               void* dst_fwd, void* dst_rev,
                               hsa_signal_t signal_fwd,
                               hsa_signal_t signal_rev) {

  // Free the src and dst buffers used in forward copy
  // including the signal used to wait
  err_ = hsa_amd_memory_pool_free(src_fwd);
  ErrorCheck(err_);
  err_ = hsa_amd_memory_pool_free(dst_fwd);
  ErrorCheck(err_);
  err_ = hsa_signal_destroy(signal_fwd);
  ErrorCheck(err_);

  // Free the src and dst buffers used in reverse copy
  // including the signal used to wait
  if (bidir) {
    err_ = hsa_amd_memory_pool_free(src_rev);
    ErrorCheck(err_);
    err_ = hsa_amd_memory_pool_free(dst_rev);
    ErrorCheck(err_);
    err_ = hsa_signal_destroy(signal_rev);
    ErrorCheck(err_);
  }
}

double RocmBandwidthTest::GetGpuCopyTime(bool bidir,
                                 hsa_signal_t signal_fwd,
                                 hsa_signal_t signal_rev) {

  // Obtain time taken for forward copy
  hsa_amd_profiling_async_copy_time_t async_time_fwd = {0};
  err_= hsa_amd_profiling_get_async_copy_time(signal_fwd, &async_time_fwd);
  ErrorCheck(err_);
  if (bidir == false) {
    return(async_time_fwd.end - async_time_fwd.start);
  }

  hsa_amd_profiling_async_copy_time_t async_time_rev = {0};
  err_= hsa_amd_profiling_get_async_copy_time(signal_rev, &async_time_rev);
  ErrorCheck(err_);
  double start = min(async_time_fwd.start, async_time_rev.start);
  double end = max(async_time_fwd.end, async_time_rev.end);
  return(end - start);
}

void RocmBandwidthTest::copy_buffer(void* dst, hsa_agent_t dst_agent,
                            void* src, hsa_agent_t src_agent,
                            size_t size, hsa_signal_t signal) {

  // Copy from src into dst buffer
  err_ = hsa_amd_memory_async_copy(dst, dst_agent,
                                   src, src_agent,
                                   size, 0, NULL, signal);
  ErrorCheck(err_);

  // Wait for the forward copy operation to complete
  while (hsa_signal_wait_acquire(signal, HSA_SIGNAL_CONDITION_LT, 1,
                                     uint64_t(-1), HSA_WAIT_STATE_ACTIVE));
}

void RocmBandwidthTest::RunCopyBenchmark(async_trans_t& trans) {

  // Bind if this transaction is bidirectional
  bool bidir = trans.copy.bidir_;

  // Initialize size of buffer to equal the largest element of allocation
226
  size_t max_size = size_list_.back();
227
228
229
230
231
232
233
234
  uint32_t size_len = size_list_.size();

  // Bind to resources such as pool and agents that are involved
  // in both forward and reverse copy operations
  void* buf_src_fwd;
  void* buf_dst_fwd;
  void* buf_src_rev;
  void* buf_dst_rev;
235
236
  void* validation_dst;
  void* validation_src;
237
238
  hsa_signal_t signal_fwd;
  hsa_signal_t signal_rev;
239
  hsa_signal_t validation_signal;
240
  hsa_signal_t signal_start_bidir;
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  uint32_t src_idx = trans.copy.src_idx_;
  uint32_t dst_idx = trans.copy.dst_idx_;
  uint32_t src_dev_idx_fwd = pool_list_[src_idx].agent_index_;
  uint32_t dst_dev_idx_fwd = pool_list_[dst_idx].agent_index_;
  uint32_t src_dev_idx_rev = dst_dev_idx_fwd;
  uint32_t dst_dev_idx_rev = src_dev_idx_fwd;
  hsa_amd_memory_pool_t src_pool_fwd = trans.copy.src_pool_;
  hsa_amd_memory_pool_t dst_pool_fwd = trans.copy.dst_pool_;
  hsa_amd_memory_pool_t src_pool_rev = dst_pool_fwd;
  hsa_amd_memory_pool_t dst_pool_rev = src_pool_fwd;
  hsa_agent_t src_agent_fwd = pool_list_[src_idx].owner_agent_;
  hsa_agent_t dst_agent_fwd = pool_list_[dst_idx].owner_agent_;
  hsa_agent_t src_agent_rev = dst_agent_fwd;
  hsa_agent_t dst_agent_rev = src_agent_fwd;

  // Allocate buffers and signal objects
  AllocateCopyBuffers(max_size,
                      src_dev_idx_fwd,
                      dst_dev_idx_fwd,
                      buf_src_fwd, src_pool_fwd,
                      buf_dst_fwd, dst_pool_fwd,
                      src_agent_fwd, dst_agent_fwd,
                      signal_fwd);

  if (bidir) {
    AllocateCopyBuffers(max_size,
                        src_dev_idx_rev,
                        dst_dev_idx_rev,
                        buf_src_rev, src_pool_rev,
                        buf_dst_rev, dst_pool_rev,
                        src_agent_rev, dst_agent_rev,
                        signal_rev);
273
274
275
276
277

    // Create a signal to begin bidir copy operations
    // @TODO: replace it with a signal pool call
    err_ = hsa_signal_create(1, 0, NULL, &signal_start_bidir);
    ErrorCheck(err_);
278
279
  }

280
  if (validate_) {
281
282
283
    AllocateHostBuffers(max_size,
                        src_dev_idx_fwd,
                        dst_dev_idx_fwd,
284
                        validation_src, validation_dst,
285
286
                        buf_src_fwd, buf_dst_fwd,
                        src_agent_fwd, dst_agent_fwd,
287
                        validation_signal);
288
289
290

    // Initialize source buffer with values from verification buffer
    copy_buffer(buf_src_fwd, src_agent_fwd,
291
292
                validation_src, cpu_agent_,
                max_size, validation_signal);
293
294
295
296
297
298
299
300
301
302
  }

  // Bind the number of iterations
  uint32_t iterations = GetIterationNum();

  // Iterate through the differnt buffer sizes to
  // compute the bandwidth as determined by copy
  for (uint32_t idx = 0; idx < size_len; idx++) {
    
    // This should not be happening
303
    size_t curr_size = size_list_[idx];
304
305
306
307
    if (curr_size > max_size) {
      break;
    }

308
    bool verify = true;
309
310
311
312
313
314
315
316
317
318
319
    std::vector<double> cpu_time;
    std::vector<double> gpu_time;
    for (uint32_t it = 0; it < iterations; it++) {
      if (it % 2) {
        printf(".");
        fflush(stdout);
      }

      hsa_signal_store_relaxed(signal_fwd, 1);
      if (bidir) {
        hsa_signal_store_relaxed(signal_rev, 1);
320
        hsa_signal_store_relaxed(signal_start_bidir, 1);
321
322
323
324
325
326
327
328
      }

      // Create a timer object and reset signals
      PerfTimer timer;
      uint32_t index = timer.CreateTimer();

      // Start the timer and launch forward copy operation
      timer.StartTimer(index);
329
330
331
332
333
334
335
336
337
338
      if (bidir == false) {
        err_ = hsa_amd_memory_async_copy(buf_dst_fwd, dst_agent_fwd,
                                         buf_src_fwd, src_agent_fwd,
                                         curr_size, 0, NULL, signal_fwd);
      } else {
        err_ = hsa_amd_memory_async_copy(buf_dst_fwd, dst_agent_fwd,
                                         buf_src_fwd, src_agent_fwd,
                                         curr_size, 1, &signal_start_bidir,
                                         signal_fwd);
      }
339
340
341
342
343
344
      ErrorCheck(err_);

      // Launch reverse copy operation if it is bidirectional
      if (bidir) {
        err_ = hsa_amd_memory_async_copy(buf_dst_rev, dst_agent_rev,
                                         buf_src_rev, src_agent_rev,
345
346
                                         curr_size, 1, &signal_start_bidir,
                                         signal_rev);
347
348
        ErrorCheck(err_);
      }
349
350
351
352
353
      
      // Signal the bidir copies to begin
      if (bidir) {
        hsa_signal_store_relaxed(signal_start_bidir, 0);
      }
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

      if (bw_blocking_run_ == NULL) {

        // Wait for the forward copy operation to complete
        while (hsa_signal_wait_acquire(signal_fwd, HSA_SIGNAL_CONDITION_LT, 1,
                                       uint64_t(-1), HSA_WAIT_STATE_ACTIVE));

        // Wait for the reverse copy operation to complete
        if (bidir) {
          while (hsa_signal_wait_acquire(signal_rev, HSA_SIGNAL_CONDITION_LT, 1,
                                         uint64_t(-1), HSA_WAIT_STATE_ACTIVE));
        }

      } else {

        // Wait for the forward copy operation to complete
        hsa_signal_wait_acquire(signal_fwd, HSA_SIGNAL_CONDITION_LT, 1,
                                       uint64_t(-1), HSA_WAIT_STATE_BLOCKED);

        // Wait for the reverse copy operation to complete
        if (bidir) {
          hsa_signal_wait_acquire(signal_rev, HSA_SIGNAL_CONDITION_LT, 1,
                                         uint64_t(-1), HSA_WAIT_STATE_BLOCKED);
        }

      }

      // Stop the timer object
      timer.StopTimer(index);

      // Push the time taken for copy into a vector of copy times
      cpu_time.push_back(timer.ReadTimer(index));

      // Collect time from the signal(s)
      if (print_cpu_time_ == false) {
        if (trans.copy.uses_gpu_) {
          double temp = GetGpuCopyTime(bidir, signal_fwd, signal_rev);
          gpu_time.push_back(temp);
        }
      }

395
      if (validate_) {
396
397

        // Init dst buffer with values from outbuffer of copy operation
398
399
        hsa_signal_store_relaxed(validation_signal, 1);
        copy_buffer(validation_dst, cpu_agent_,
400
                    buf_dst_fwd, dst_agent_fwd,
401
                    curr_size, validation_signal);
402
403

        // Compare output equals input
404
405
        err_ = (hsa_status_t)memcmp(validation_src, validation_dst, curr_size);
        if (err_ != HSA_STATUS_SUCCESS) {
406
407
          verify = false;
          exit_value_ = err_;
408
409
410
411
412
413
414
415
416
417
418
        }
      }
    }

    // Get Cpu min copy time
    trans.cpu_min_time_.push_back(GetMinTime(cpu_time));
    // Get Cpu mean copy time and store to the array
    trans.cpu_avg_time_.push_back(GetMeanTime(cpu_time));

    if (print_cpu_time_ == false) {
      if (trans.copy.uses_gpu_) {
419
420
421
422
423
        // Get Gpu min and mean copy times
        double min_time = (verify) ? GetMinTime(gpu_time) : std::numeric_limits<double>::max();
        double mean_time = (verify) ? GetMeanTime(gpu_time) : std::numeric_limits<double>::max();
        trans.gpu_min_time_.push_back(min_time);
        trans.gpu_avg_time_.push_back(mean_time);
424
425
      }
    }
426
    verify = true;
427
428
429
430
431
432
433
434
435
436

    // Clear the stack of cpu times
    cpu_time.clear();
    gpu_time.clear();
  }

  // Free up buffers and signal objects used in copy operation
  ReleaseBuffers(bidir, buf_src_fwd, buf_src_rev,
                 buf_dst_fwd, buf_dst_rev, signal_fwd, signal_rev);

437
  if (validate_) {
438
    hsa_signal_t fake_signal = {0};
439
440
    ReleaseBuffers(false, validation_src, NULL,
                   validation_dst, NULL, validation_signal, fake_signal);
441
  }
442
443
444
445
446
447

  // Free signal used to sync bidirectional copies
  if (bidir) {
    err_ = hsa_signal_destroy(signal_start_bidir);
    ErrorCheck(err_);
  }
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
}

void RocmBandwidthTest::Run() {

  // Enable profiling of Async Copy Activity
  if (print_cpu_time_ == false) {
    err_ = hsa_amd_profiling_async_copy_enable(true);
    ErrorCheck(err_);
  }

  // Iterate through the list of transactions and execute them
  uint32_t trans_size = trans_list_.size();
  for (uint32_t idx = 0; idx < trans_size; idx++) {
    async_trans_t& trans = trans_list_[idx];
    if ((trans.req_type_ == REQ_COPY_BIDIR) ||
        (trans.req_type_ == REQ_COPY_UNIDIR) ||
        (trans.req_type_ == REQ_COPY_ALL_BIDIR) ||
        (trans.req_type_ == REQ_COPY_ALL_UNIDIR)) {
      RunCopyBenchmark(trans);
      ComputeCopyTime(trans);
    }
    if ((trans.req_type_ == REQ_READ) ||
        (trans.req_type_ == REQ_WRITE)) {
      RunIOBenchmark(trans);
    }
  }
  std::cout << std::endl;

  // Disable profiling of Async Copy Activity
  if (print_cpu_time_ == false) {
    err_ = hsa_amd_profiling_async_copy_enable(false);
    ErrorCheck(err_);
  }

}

void RocmBandwidthTest::Close() {
  hsa_status_t status = hsa_shut_down();
  ErrorCheck(status);
  return;
}

// Sets up the bandwidth test object to enable running
// the various test scenarios requested by user. The
// things this proceedure takes care of are:
//    
//    Parse user arguments
//    Discover RocR Device Topology
//    Determine validity of requested test scenarios
//    Build the list of transactions to execute
//    Miscellaneous
//
void RocmBandwidthTest::SetUp() {

  // Parse user arguments
  ParseArguments();

  // Validate input parameters
  bool status = ValidateArguments();
  if (status == false) {
    PrintHelpScreen();
    exit(1);
  }

  // Build list of transactions (copy, read, write) to execute
  status = BuildTransList();
  if (status == false) {
    PrintHelpScreen();
    exit(1);
  }
}

RocmBandwidthTest::RocmBandwidthTest(int argc, char** argv) : BaseTest() {
  
  usr_argc_ = argc;
  usr_argv_ = argv;
  
  pool_index_ = 0;
  cpu_index_ = -1;
  agent_index_ = 0;
  
  req_read_ = REQ_INVALID;
  req_write_ = REQ_INVALID;
  req_copy_bidir_ = REQ_INVALID;
  req_copy_unidir_ = REQ_INVALID;
  req_copy_all_bidir_ = REQ_INVALID;
  req_copy_all_unidir_ = REQ_INVALID;
  
  access_matrix_ = NULL;
537
  link_type_matrix_ = NULL;
538
  active_agents_list_ = NULL;
539
  link_weight_matrix_ = NULL;
540
  
541
  latency_ = false;
542
  validate_ = false;
543
544
  print_cpu_time_ = false;

545
  // Initialize version of the test
546
  version_.major_id = 2;
547
548
  version_.minor_id = 1;
  version_.step_id = 0;
549
550
  version_.reserved = 0;

551
  bw_iter_cnt_ = getenv("ROCM_BW_ITER_CNT");
552
553
554
  bw_default_run_ = getenv("ROCM_BW_DEFAULT_RUN");
  bw_blocking_run_ = getenv("ROCR_BW_RUN_BLOCKING");
  skip_fine_grain_ = getenv("ROCM_SKIP_FINE_GRAINED_POOL");
555

556
557
558
559
560
561
562
563
  if (bw_iter_cnt_ != NULL) {
    int32_t num = atoi(bw_iter_cnt_);
    if (num < 0) {
      std::cout << "Value of ROCM_BW_ITER_CNT can't be negative: " << num << std::endl;
    }
    set_num_iteration(num);
  }

564
  exit_value_ = 0;
565
566
}

567
568
569
570
571
572
573
RocmBandwidthTest::~RocmBandwidthTest() {

  delete access_matrix_;
  delete link_type_matrix_;
  delete link_weight_matrix_;
  delete active_agents_list_;
}
574

575
576
577
578
579
580
581
582
583
std::string RocmBandwidthTest::GetVersion() const {

  std::stringstream stream;
  stream << version_.major_id << ".";
  stream << version_.minor_id << ".";
  stream << version_.step_id;
  return stream.str();
}