- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please follow this tutorial.
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please refer to the [tutorial](../../deploy/pdserving/readme.md) for usage.
# Service deployment based on PaddleHub Serving
The hubserving service deployment directory includes three service packages: detection, recognition, and two-stage series connection. Please select the corresponding service package to install and start service according to your needs. The directory is as follows:
```
deploy/hubserving/
└─ ocr_det detection module service package
└─ ocr_cls angle class module service package
└─ ocr_rec recognition module service package
└─ ocr_system two-stage series connection service package
```
Each service pack contains 3 files. Take the 2-stage series connection service package as an example, the directory is as follows:
```
deploy/hubserving/ocr_system/
└─ __init__.py Empty file, required
└─ config.json Configuration file, optional, passed in as a parameter when using configuration to start the service
└─ module.py Main module file, required, contains the complete logic of the service
└─ params.py Parameter file, required, including parameters such as model path, pre- and post-processing parameters
```
## Quick start service
The following steps take the 2-stage series service as an example. If only the detection service or recognition service is needed, replace the corresponding file path.
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the ultra lightweight model of v1.1 is used, and the default model path is:
text direction classifier: ./inference/ch_ppocr_mobile_v1.1_cls_infer/
```
**The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.
### 3. Install Service Module
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs.
* On Linux platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy/hubserving/ocr_det/
# Or, install the angle class service module:
hub install deploy/hubserving/ocr_cls/
# Or, install the recognition service module:
hub install deploy/hubserving/ocr_rec/
# Or, install the 2-stage series service module:
hub install deploy/hubserving/ocr_system/
```
* On Windows platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy\hubserving\ocr_det\
# Or, install the angle class service module:
hub install deploy\hubserving\ocr_cls\
# Or, install the recognition service module:
hub install deploy\hubserving\ocr_rec\
# Or, install the 2-stage series service module:
hub install deploy\hubserving\ocr_system\
```
### 4. Start service
#### Way 1. Start with command line parameters (CPU only)
|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>*`When Version is not specified, the latest version is selected by default`*|
|--port/-p|Service port, default is 8866|
|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines<br>*`Windows operating system only supports single-process mode`*|
|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|
For example, start the 2-stage series service:
```shell
hub serving start -m ocr_system
```
This completes the deployment of a service API, using the default port number 8866.
#### Way 2. Start with configuration file(CPU、GPU)
**start command:**
```shell
hub serving start --config/-c config.json
```
Wherein, the format of `config.json` is as follows:
```python
{
"modules_info":{
"ocr_system":{
"init_args":{
"version":"1.0.0",
"use_gpu":true
},
"predict_args":{
}
}
},
"port":8868,
"use_multiprocess":false,
"workers":2
}
```
- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them, **when `use_gpu` is `true`, it means that the GPU is used to start the service**.
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
**Note:**
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
-**`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**
For example, use GPU card No. 3 to start the 2-stage series service:
For example, if the detection, recognition and 2-stage serial services are started with provided configuration files, the respective `server_url` would be:
`http://127.0.0.1:8865/predict/ocr_det`
`http://127.0.0.1:8866/predict/ocr_cls`
`http://127.0.0.1:8867/predict/ocr_rec`
`http://127.0.0.1:8868/predict/ocr_system`
-**image_path**:Test image path, can be a single image path or an image directory path
The returned result is a list. Each item in the list is a dict. The dict may contain three fields. The information is as follows:
|field name|data type|description|
|----|----|----|
|angle|str|angle|
|text|str|text content|
|confidence|float|text recognition confidence|
|text_region|list|text location coordinates|
The fields returned by different modules are different. For example, the results returned by the text recognition service module do not contain `text_region`. The details are as follows:
| field name/module name | ocr_det | ocr_cls | ocr_rec | ocr_system |
| ---- | ---- | ---- | ---- | ---- |
|angle| | ✔ | | ✔ |
|text| | |✔|✔|
|confidence| |✔ |✔|✔|
|text_region| ✔| | |✔ |
**Note:** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.
## User defined service module modification
If you need to modify the service logic, the following steps are generally required (take the modification of `ocr_system` for example):
- 1. Stop service
```shell
hub serving stop --port/-p XXXX
```
- 2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs.
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. If you want to turn off the text direction classifier, set the parameter `use_angle_cls` to `False`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation. It is suggested to run `module.py` directly for debugging after modification before starting the service test.
PaddleOCR decomposes an algorithm into the following parts, and modularizes each part to make it more convenient to develop new algorithms.
* Data loading and processing
* Network
* Post-processing
* Loss
* Metric
* Optimizer
The following will introduce each part separately, and introduce how to add the modules required for the new algorithm.
## Data loading and processing
Data loading and processing are composed of different modules, which complete the image reading, data augment and label production. This part is under [ppocr/data](../../ppocr/data). The explanation of each file and folder are as follows:
```bash
ppocr/data/
├── imaug # Scripts for image reading, data augment and label production
│ ├── label_ops.py # Modules that transform the label
│ ├── operators.py # Modules that transform the image
│ ├──.....
├── __init__.py
├── lmdb_dataset.py # The dataset that reads the lmdb
└── simple_dataset.py # Read the dataset saved in the form of `image_path\tgt`
```
PaddleOCR has a large number of built-in image operation related modules. For modules that are not built-in, you can add them through the following steps:
1. Create a new file under the [ppocr/data/imaug](../../ppocr/data/imaug) folder, such as my_module.py.
2. Add code in the my_module.py file, the sample code is as follows:
```python
classMyModule:
def__init__(self,*args,**kwargs):
# your init code
pass
def__call__(self,data):
img=data['image']
label=data['label']
# your process code
data['image']=img
data['label']=label
returndata
```
3. Import the added module in the [ppocr/data/imaug/\__init\__.py](../../ppocr/data/imaug/__init__.py) file.
All different modules of data processing are executed by sequence, combined and executed in the form of a list in the config file. Such as:
```yaml
# angle class data process
transforms:
-DecodeImage:# load image
img_mode:BGR
channel_first:False
-MyModule:
args1:args1
args2:args2
-KeepKeys:
keep_keys:['image','label']# dataloader will return list in this order
```
## Network
The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).
```bash
├── architectures # Code for building network
├── transforms # Image Transformation Module
├── backbones # Feature extraction module
├── necks # Feature enhancement module
└── heads # Output module
```
PaddleOCR has built-in commonly used modules related to algorithms such as DB, EAST, SAST, CRNN and Attention. For modules that do not have built-in, you can add them through the following steps, the four parts are added in the same steps, take backbones as an example:
1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:
```python
importpaddle
importpaddle.nnasnn
importpaddle.nn.functionalasF
classMyBackbone(nn.Layer):
def__init__(self,*args,**kwargs):
super(MyBackbone,self).__init__()
# your init code
self.conv=nn.xxxx
defforward(self,inputs):
# your necwork forward
y=self.conv(inputs)
returny
```
3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.
After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:
```yaml
Architecture:
model_type:rec
algorithm:CRNN
Transform:
name:MyTransform
args1:args1
args2:args2
Backbone:
name:MyBackbone
args1:args1
Neck:
name:MyNeck
args1:args1
Head:
name:MyHead
args1:args1
```
## Post-processing
Post-processing realizes decoding network output to obtain text box or recognized text. This part is under [ppocr/postprocess](../../ppocr/postprocess).
PaddleOCR has built-in post-processing modules related to algorithms such as DB, EAST, SAST, CRNN and Attention. For components that are not built-in, they can be added through the following steps:
1. Create a new file under the [ppocr/postprocess](../../ppocr/postprocess) folder, such as my_postprocess.py.
2. Add code in the my_postprocess.py file, the sample code is as follows:
3. Import the added module in the [ppocr/postprocess/\__init\__.py](../../ppocr/postprocess/__init__.py) file.
After the post-processing module is added, you only need to configure it in the configuration file to use, such as:
```yaml
PostProcess:
name:MyPostProcess
args1:args1
args2:args2
```
## Loss
The loss function is used to calculate the distance between the network output and the label. This part is under [ppocr/losses](../../ppocr/losses).
PaddleOCR has built-in loss function modules related to algorithms such as DB, EAST, SAST, CRNN and Attention. For modules that do not have built-in modules, you can add them through the following steps:
1. Create a new file in the [ppocr/losses](../../ppocr/losses) folder, such as my_loss.py.
2. Add code in the my_loss.py file, the sample code is as follows:
```python
importpaddle
frompaddleimportnn
classMyLoss(nn.Layer):
def__init__(self,**kwargs):
super(MyLoss,self).__init__()
# you init code
pass
def__call__(self,predicts,batch):
label=batch[1]
# your loss code
loss=self.loss(input=predicts,label=label)
return{'loss':loss}
```
3. Import the added module in the [ppocr/losses/\__init\__.py](../../ppocr/losses/__init__.py) file.
After the loss function module is added, you only need to configure it in the configuration file to use it, such as:
```yaml
Loss:
name:MyLoss
args1:args1
args2:args2
```
## Metric
Metric is used to calculate the performance of the network on the current batch. This part is under [ppocr/metrics](../../ppocr/metrics). PaddleOCR has built-in evaluation modules related to algorithms such as detection, classification and recognition. For modules that do not have built-in modules, you can add them through the following steps:
1. Create a new file under the [ppocr/metrics](../../ppocr/metrics) folder, such as my_metric.py.
2. Add code in the my_metric.py file, the sample code is as follows:
```python
classMyMetric(object):
def__init__(self,main_indicator='acc',**kwargs):
# main_indicator is used for select best model
self.main_indicator=main_indicator
self.reset()
def__call__(self,preds,batch,*args,**kwargs):
# preds is out of postprocess
# batch is out of dataloader
labels=batch[1]
cur_correct_num=0
cur_all_num=0
# you metric code
self.correct_num+=cur_correct_num
self.all_num+=cur_all_num
return{'acc':cur_correct_num/cur_all_num,}
defget_metric(self):
"""
return metircs {
'acc': 0,
'norm_edit_dis': 0,
}
"""
acc=self.correct_num/self.all_num
self.reset()
return{'acc':acc}
defreset(self):
# reset metric
self.correct_num=0
self.all_num=0
```
3. Import the added module in the [ppocr/metrics/\__init\__.py](../../ppocr/metrics/__init__.py) file.
After the metric module is added, you only need to configure it in the configuration file to use it, such as:
```yaml
Metric:
name:MyMetric
main_indicator:acc
```
## 优化器
The optimizer is used to train the network. The optimizer also contains network regularization and learning rate decay modules. This part is under [ppocr/optimizer](../../ppocr/optimizer). PaddleOCR has built-in
Commonly used optimizer modules such as `Momentum`, `Adam` and `RMSProp`, common regularization modules such as `Linear`, `Cosine`, `Step` and `Piecewise`, and common learning rate decay modules such as `L1Decay` and `L2Decay`.
Modules without built-in can be added through the following steps, take `optimizer` as an example:
1. Create your own optimizer in the [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) file, the sample code is as follows:
| -c | ALL | Specify configuration file to use | None | **Please refer to the parameter introduction for configuration file usage** |
| -o | ALL | set configuration options | None | Configuration using -o has higher priority than the configuration file selected with -c. E.g: `-o Global.use_gpu=false` |
| -c | ALL | Specify configuration file to use | None | **Please refer to the parameter introduction for configuration file usage** |
| -o | ALL | set configuration options | None | Configuration using -o has higher priority than the configuration file selected with -c. E.g: -o Global.use_gpu=false |
## INTRODUCTION TO GLOBAL PARAMETERS OF CONFIGURATION FILE
Take `rec_chinese_lite_train_v1.1.yml` as an example
Take rec_chinese_lite_train_v1.1.yml as an example
| algorithm | Select algorithm to use | Synchronize with configuration file | For selecting model, please refer to the supported model [list](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/README_en.md) |
| use_gpu | Set using GPU or not | true | \ |
| epoch_num | Maximum training epoch number | 3000 | \ |
| use_gpu | Set using GPU or not | true | \ |
| epoch_num | Maximum training epoch number | 500 | \ |
| save_model_dir | Set model save path | output/{model_name} | \ |
| save_model_dir | Set model save path | output/{算法名称} | \ |
| save_epoch_step | Set model save interval | 3 | \ |
| eval_batch_step | Set the model evaluation interval |2000 or [1000, 2000] |runing evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration |
|train_batch_size_per_card | Set the batch size during training | 256 | \ |
| test_batch_size_per_card | Set the batch size during testing | 256 | \ |
| loss_type | Set loss type | ctc | Supports two types of loss: ctc / attention |
| distort | Set use distort | false | Support distort type ,read [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py) |
| use_space_char | Wether to recognize space | false | Only support in character_type=ch mode |
label_list | Set the angle supported by the direction classifier | ['0','180'] | Only valid in the direction classifier |
| reader_yml | Set the reader configuration file | ./configs/rec/rec_icdar15_reader.yml | \ |
| reader_function | Select data reading method | ppocr.data.rec.dataset_traversal,SimpleReader | Support two data reading methods: SimpleReader / LMDBReader |
| num_workers | Set the number of data reading threads | 8 | \ |
| infer_img | Result folder path | ./infer_img | \|
| eval_batch_step | Set the model evaluation interval | 2000 or [1000, 2000] | runing evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration |
| cal_metric_during_train | Set whether to evaluate the metric during the training process. At this time, the metric of the model under the current batch is evaluated | true | \ |
| load_static_weights | Set whether the pre-training model is saved in static graph mode (currently only required by the detection algorithm) | true | \ |
| pretrained_model | Set the path of the pre-trained model | ./pretrain_models/CRNN/best_accuracy | \ |
| checkpoints | set model parameter path | None | Used to load parameters after interruption to continue training|
| use_visualdl | Set whether to enable visualdl for visual log display | False | [Tutorial](https://www.paddlepaddle.org.cn/paddle/visualdl) |
| infer_img | Set inference image path or folder path | ./infer_img | \|
| name | Optimizer class name | Adam | Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ |
| beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ |
| **lr** | Set the learning rate decay method | - | \ |
| name | Learning rate decay class name | Cosine | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | Set the base learning rate | 0.001 | \ |
| model_type | Network Type | rec | Currently support`rec`,`det`,`cls` |
| algorithm | Model name | CRNN | See [algorithm_overview](./algorithm_overview.md) for the support list |
| **Transform** | Set the transformation method | - | Currently only recognition algorithms are supported, see [ppocr/modeling/transform](../../ppocr/modeling/transform) for details |
| name | Transformation class name | TPS | Currently supports `TPS` |
| num_fiducial | Number of TPS control points | 20 | Ten on the top and bottom |
| name | Metric method name | CTCLabelDecode | Currently support`DetMetric`,`RecMetric`,`ClsMetric` |
| main_indicator | Main indicators, used to select the best model | acc | For the detection method is hmean, the recognition and classification method is acc |
| function | Select Optimizer function | pocr.optimizer,AdamDecay | Only support Adam |
| base_lr | Set the base lr | 0.0005 | \ |
| beta1 | Set the exponential decay rate for the 1st moment estimates |0.9 | \ |
| beta2 | Set the exponential decay rate for the 2nd moment estimates|0.999 | \ |
| decay | Whether to use decay | \ | \ |
| function(decay) | Set the decay function | cosine_decay | Support cosine_decay, cosine_decay_warmup and piecewise_decay |
| step_each_epoch| The number of steps in an epoch. Used in cosine_decay/cosine_decay_warmup | 20 | Calculation: total_image_num / (batch_size_per_card * card_size) |
| total_epoch | The number of epochs. Used in cosine_decay/cosine_decay_warmup | 1000 | Consistent with Global.epoch_num |
| warmup_minibatch | Number of steps for linear warmup. Used in cosine_decay_warmup | 1000 | \ |
| boundaries | The step intervals to reduce learning rate. Used in piecewise_decay | - | The format is list |
| decay_rate | Learning rate decay rate. Used in piecewise_decay | - | \ |
| **dataset** | Return one sample per iteration | - | - |
| name | dataset class name | SimpleDataSet | Currently support`SimpleDataSet`,`LMDBDateSet` |
| label_file_list | Groundtruth file path|["./train_data/train_list.txt"] | This parameter is not required when dataset is LMDBDateSet |
| ratio_list | Ratio of data set | [1.0] | If there are two train_lists in label_file_list and ratio_list is [0.4,0.6], 40% will be sampled from train_list1, and 60% will be sampled from train_list2 to combine the entire dataset |
| transforms | List of methods to transform images and labels | [DecodeImage,CTCLabelEncode,RecResizeImg,KeepKeys] | see[ppocr/data/imaug](../../ppocr/data/imaug) |
| **loader**| dataloader related | - | |
| shuffle | Does each epoch disrupt the order of the data set | True | \ |
| batch_size_per_card | Single card batch size during training | 256 | \ |
| drop_last | Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size | True | \ |
| num_workers | The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process | 8 | \ |