Commit ac703e56 authored by Topdu's avatar Topdu
Browse files

Merge branch 'dygraph' of https://github.com/Topdu/PaddleOCR into dygraph

parents f83524bd 7c7972f3
......@@ -101,7 +101,7 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
- [PP-Structure 🔥](./ppstructure/README.md)
- [Quick Start](./ppstructure/docs/quickstart_en.md)
- [Model Zoo](./ppstructure/docs/models_list_en.md)
- [Model training](./doc/doc_en/training_en.md)
- [Model training](./doc/doc_en/training_en.md)
- [Layout Parser](./ppstructure/layout/README.md)
- [Table Recognition](./ppstructure/table/README.md)
- [DocVQA](./ppstructure/vqa/README.md)
......@@ -121,9 +121,9 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
- [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
- [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- Datasets
- [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
- [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
- [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [General OCR Datasets(Chinese/English)](doc/doc_en/dataset/datasets_en.md)
- [HandWritten_OCR_Datasets(Chinese)](doc/doc_en/dataset/handwritten_datasets_en.md)
- [Various OCR Datasets(multilingual)](doc/doc_en/dataset/vertical_and_multilingual_datasets_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
- [Visualization](#Visualization)
- [Community](#Community)
......@@ -170,4 +170,4 @@ More details, please refer to [Multilingual OCR Development Plan](https://github
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
\ No newline at end of file
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
......@@ -128,12 +128,12 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [其它数据标注工具](./doc/doc_ch/data_annotation.md)
- [其它数据合成工具](./doc/doc_ch/data_synthesis.md)
- 数据集
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
- [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md)
- [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md)
- [版面分析数据集](./doc/doc_ch/layout_datasets.md)
- [表格识别数据集](./doc/doc_ch/table_datasets.md)
- [DocVQA数据集](./doc/doc_ch/docvqa_datasets.md)
- [通用中英文OCR数据集](doc/doc_ch/dataset/datasets.md)
- [手写中文OCR数据集](doc/doc_ch/dataset/handwritten_datasets.md)
- [垂类多语言OCR数据集](doc/doc_ch/dataset/vertical_and_multilingual_datasets.md)
- [版面分析数据集](doc/doc_ch/dataset/layout_datasets.md)
- [表格识别数据集](doc/doc_ch/dataset/table_datasets.md)
- [DocVQA数据集](doc/doc_ch/dataset/docvqa_datasets.md)
- [代码组织结构](./doc/doc_ch/tree.md)
- [效果展示](#效果展示)
- [《动手学OCR》电子书📚](./doc/doc_ch/ocr_book.md)
......@@ -160,13 +160,13 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv2 英文模型</summary>
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
</div>
......@@ -176,12 +176,12 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
<details open>
<summary>PP-OCRv2 其他语言模型</summary>
<div align="center">
<img src="./doc/imgs_results/french_0.jpg" width="800">
<img src="./doc/imgs_results/korean.jpg" width="800">
</div>
</details>
<details open>
......@@ -196,8 +196,8 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
<div align="center">
<img src="./ppstructure/docs/vqa/result_ser/zh_val_0_ser.jpg" width="800">
</div>
- RE(关系提取)
- RE(关系提取)
<div align="center">
<img src="./ppstructure/docs/vqa/result_re/zh_val_21_re.jpg" width="800">
</div>
......
Global:
debug: false
use_gpu: true
epoch_num: 100
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_ppocr_v3_rotnet
save_epoch_step: 3
eval_batch_step: [0, 2000]
cal_metric_during_train: true
pretrained_model: null
checkpoints: null
save_inference_dir: null
use_visualdl: false
infer_img: doc/imgs_words/ch/word_1.jpg
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
max_text_length: 25
infer_mode: false
use_space_char: true
save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
regularizer:
name: L2
factor: 1.0e-05
Architecture:
model_type: cls
algorithm: CLS
Transform: null
Backbone:
name: MobileNetV1Enhance
scale: 0.5
last_conv_stride: [1, 2]
last_pool_type: avg
Neck:
Head:
name: ClsHead
class_dim: 4
Loss:
name: ClsLoss
main_indicator: acc
PostProcess:
name: ClsPostProcess
Metric:
name: ClsMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data
label_file_list:
- ./train_data/train_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- RecAug:
use_tia: False
- RandAugment:
- SSLRotateResize:
image_shape: [3, 48, 320]
- KeepKeys:
keep_keys: ["image", "label"]
loader:
collate_fn: "SSLRotateCollate"
shuffle: true
batch_size_per_card: 32
drop_last: true
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data
label_file_list:
- ./train_data/val_list.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- SSLRotateResize:
image_shape: [3, 48, 320]
- KeepKeys:
keep_keys: ["image", "label"]
loader:
collate_fn: "SSLRotateCollate"
shuffle: false
drop_last: false
batch_size_per_card: 64
num_workers: 8
profiler_options: null
Global:
debug: false
use_gpu: true
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/ch_PP-OCR_v3_det/
save_epoch_step: 100
eval_batch_step:
- 0
- 400
cal_metric_during_train: false
pretrained_model: null
checkpoints: null
save_inference_dir: null
use_visualdl: false
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./checkpoints/det_db/predicts_db.txt
distributed: true
Architecture:
name: DistillationModel
algorithm: Distillation
model_type: det
Models:
Student:
model_type: det
algorithm: DB
Transform: null
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: true
Neck:
name: RSEFPN
out_channels: 96
shortcut: True
Head:
name: DBHead
k: 50
Student2:
model_type: det
algorithm: DB
Transform: null
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: true
Neck:
name: RSEFPN
out_channels: 96
shortcut: True
Head:
name: DBHead
k: 50
Teacher:
freeze_params: true
return_all_feats: false
model_type: det
algorithm: DB
Backbone:
name: ResNet
in_channels: 3
layers: 50
Neck:
name: LKPAN
out_channels: 256
Head:
name: DBHead
kernel_list: [7,2,2]
k: 50
Loss:
name: CombinedLoss
loss_config_list:
- DistillationDilaDBLoss:
weight: 1.0
model_name_pairs:
- ["Student", "Teacher"]
- ["Student2", "Teacher"]
key: maps
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
- DistillationDMLLoss:
model_name_pairs:
- ["Student", "Student2"]
maps_name: "thrink_maps"
weight: 1.0
# act: None
model_name_pairs: ["Student", "Student2"]
key: maps
- DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Student2"]
# key: maps
# name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: L2
factor: 5.0e-05
PostProcess:
name: DistillationDBPostProcess
model_name: ["Student"]
key: head_out
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DistillationMetric
base_metric_name: DetMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- CopyPaste:
- IaaAugment:
augmenter_args:
- type: Fliplr
args:
p: 0.5
- type: Affine
args:
rotate:
- -10
- 10
- type: Resize
args:
size:
- 0.5
- 3
- EastRandomCropData:
size:
- 960
- 960
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- threshold_map
- threshold_mask
- shrink_map
- shrink_mask
loader:
shuffle: true
drop_last: false
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- DetResizeForTest: null
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- shape
- polys
- ignore_tags
loader:
shuffle: false
drop_last: false
batch_size_per_card: 1
num_workers: 2
Global:
debug: false
use_gpu: true
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/ch_PP-OCR_V3_det/
save_epoch_step: 100
eval_batch_step:
- 0
- 400
cal_metric_during_train: false
pretrained_model: null
checkpoints: null
save_inference_dir: null
use_visualdl: false
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./checkpoints/det_db/predicts_db.txt
distributed: true
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: RSEFPN
out_channels: 96
shortcut: True
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: L2
factor: 5.0e-05
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- IaaAugment:
augmenter_args:
- type: Fliplr
args:
p: 0.5
- type: Affine
args:
rotate:
- -10
- 10
- type: Resize
args:
size:
- 0.5
- 3
- EastRandomCropData:
size:
- 960
- 960
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- threshold_map
- threshold_mask
- shrink_map
- shrink_mask
loader:
shuffle: true
drop_last: false
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- DetResizeForTest: null
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- shape
- polys
- ignore_tags
loader:
shuffle: false
drop_last: false
batch_size_per_card: 1
num_workers: 2
......@@ -22,9 +22,11 @@ PP-OCR has supported muti deployment schemes. Click the link to get the specific
- [Python Inference](../doc/doc_en/inference_ppocr_en.md)
- [C++ Inference](./cpp_infer/readme.md)
- [Serving](./pdserving/README.md)
- [Paddle-Lite](./lite/readme.md)
- [Serving (Python/C++)](./pdserving/README.md)
- [Paddle-Lite (ARM CPU/OpenCL ARM GPU/Metal ARM GPU)](./lite/readme.md)
- [Paddle.js](./paddlejs/README.md)
- [Jetson Inference]()
- [XPU Inference]()
- [Paddle2ONNX](./paddle2onnx/readme.md)
If you need the deployment tutorial of academic algorithm models other than PP-OCR, please directly enter the main page of corresponding algorithms, [entrance](../doc/doc_en/algorithm_overview_en.md)
\ No newline at end of file
......@@ -22,9 +22,11 @@ PP-OCR模型已打通多种场景部署方案,点击链接获取具体的使
- [Python 推理](../doc/doc_ch/inference_ppocr.md)
- [C++ 推理](./cpp_infer/readme_ch.md)
- [Serving 服务化部署](./pdserving/README_CN.md)
- [Paddle-Lite 端侧部署](./lite/readme_ch.md)
- [Paddle.js 服务化部署](./paddlejs/README_ch.md)
- [Serving 服务化部署(Python/C++)](./pdserving/README_CN.md)
- [Paddle-Lite 端侧部署(ARM CPU/OpenCL ARM GPU/Metal ARM GPU)](./lite/readme_ch.md)
- [Paddle.js 部署](./paddlejs/README_ch.md)
- [Jetson 推理]()
- [XPU 推理]()
- [Paddle2ONNX 推理](./paddle2onnx/readme_ch.md)
需要PP-OCR以外的学术算法模型的推理部署,请直接进入相应算法主页面,[入口](../doc/doc_ch/algorithm_overview.md)
\ No newline at end of file
......@@ -35,17 +35,7 @@ from ppocr.metrics import build_metric
import tools.program as program
from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader
def export_single_model(quanter, model, infer_shape, save_path, logger):
quanter.save_quantized_model(
model,
save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
logger.info('inference QAT model is saved to {}'.format(save_path))
from tools.export_model import export_single_model
def main():
......@@ -84,17 +74,54 @@ def main():
config['Global'])
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
if config['Architecture']['Models'][key]['Head'][
'name'] == 'MultiHead': # for multi head
if config['PostProcess'][
'name'] == 'DistillationSARLabelDecode':
char_num = char_num - 2
# update SARLoss params
assert list(config['Loss']['loss_config_list'][-1].keys())[
0] == 'DistillationSARLoss'
config['Loss']['loss_config_list'][-1][
'DistillationSARLoss']['ignore_index'] = char_num + 1
out_channels_list = {}
out_channels_list['CTCLabelDecode'] = char_num
out_channels_list['SARLabelDecode'] = char_num + 2
config['Architecture']['Models'][key]['Head'][
'out_channels_list'] = out_channels_list
else:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
elif config['Architecture']['Head'][
'name'] == 'MultiHead': # for multi head
if config['PostProcess']['name'] == 'SARLabelDecode':
char_num = char_num - 2
# update SARLoss params
assert list(config['Loss']['loss_config_list'][1].keys())[
0] == 'SARLoss'
if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
config['Loss']['loss_config_list'][1]['SARLoss'] = {
'ignore_index': char_num + 1
}
else:
config['Loss']['loss_config_list'][1]['SARLoss'][
'ignore_index'] = char_num + 1
out_channels_list = {}
out_channels_list['CTCLabelDecode'] = char_num
out_channels_list['SARLabelDecode'] = char_num + 2
config['Architecture']['Head'][
'out_channels_list'] = out_channels_list
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
if config['PostProcess']['name'] == 'SARLabelDecode': # for SAR model
config['Loss']['ignore_index'] = char_num - 1
model = build_model(config['Architecture'])
# get QAT model
......@@ -120,21 +147,22 @@ def main():
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
infer_shape = [3, 32, 100] if model_type == "rec" else [3, 640, 640]
save_path = config["Global"]["save_inference_dir"]
arch_config = config["Architecture"]
arch_config = config["Architecture"]
if arch_config["algorithm"] in ["Distillation", ]: # distillation model
archs = list(arch_config["Models"].values())
for idx, name in enumerate(model.model_name_list):
model.model_list[idx].eval()
sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(quanter, model.model_list[idx], infer_shape,
sub_model_save_path, logger)
export_single_model(model.model_list[idx], archs[idx],
sub_model_save_path, logger, quanter)
else:
save_path = os.path.join(save_path, "inference")
model.eval()
export_single_model(quanter, model, infer_shape, save_path, logger)
export_single_model(model, arch_config, save_path, logger, quanter)
if __name__ == "__main__":
......
......@@ -112,10 +112,48 @@ def main(config, device, logger, vdl_writer):
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
if config['Architecture']['Models'][key]['Head'][
'name'] == 'MultiHead': # for multi head
if config['PostProcess'][
'name'] == 'DistillationSARLabelDecode':
char_num = char_num - 2
# update SARLoss params
assert list(config['Loss']['loss_config_list'][-1].keys())[
0] == 'DistillationSARLoss'
config['Loss']['loss_config_list'][-1][
'DistillationSARLoss']['ignore_index'] = char_num + 1
out_channels_list = {}
out_channels_list['CTCLabelDecode'] = char_num
out_channels_list['SARLabelDecode'] = char_num + 2
config['Architecture']['Models'][key]['Head'][
'out_channels_list'] = out_channels_list
else:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
elif config['Architecture']['Head'][
'name'] == 'MultiHead': # for multi head
if config['PostProcess']['name'] == 'SARLabelDecode':
char_num = char_num - 2
# update SARLoss params
assert list(config['Loss']['loss_config_list'][1].keys())[
0] == 'SARLoss'
if config['Loss']['loss_config_list'][1]['SARLoss'] is None:
config['Loss']['loss_config_list'][1]['SARLoss'] = {
'ignore_index': char_num + 1
}
else:
config['Loss']['loss_config_list'][1]['SARLoss'][
'ignore_index'] = char_num + 1
out_channels_list = {}
out_channels_list['CTCLabelDecode'] = char_num
out_channels_list['SARLabelDecode'] = char_num + 2
config['Architecture']['Head'][
'out_channels_list'] = out_channels_list
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
if config['PostProcess']['name'] == 'SARLabelDecode': # for SAR model
config['Loss']['ignore_index'] = char_num - 1
model = build_model(config['Architecture'])
pre_best_model_dict = dict()
......
......@@ -25,8 +25,8 @@
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- | --- |
|DB|ResNet50_vd|configs/det/det_r50_vd_db.yml|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|configs/det/det_mv3_db.yml|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
<a name="2"></a>
......
# FCENet
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [Fourier Contour Embedding for Arbitrary-Shaped Text Detection](https://arxiv.org/abs/2104.10442)
> Yiqin Zhu and Jianyong Chen and Lingyu Liang and Zhanghui Kuang and Lianwen Jin and Wayne Zhang
> CVPR, 2021
在CTW1500文本检测公开数据集上,算法复现效果如下:
| 模型 |骨干网络|配置文件|precision|recall|Hmean|下载链接|
|-----| --- | --- | --- | --- | --- | --- |
| FCE | ResNet50_dcn | [configs/det/det_r50_vd_dcn_fce_ctw.yml](../../configs/det/det_r50_vd_dcn_fce_ctw.yml)| 88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
上述FCE模型使用CTW1500文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)
数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将FCE文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd_dcn骨干网络,在CTW1500英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar) ),可以使用如下命令进行转换:
```shell
python3 tools/export_model.py -c configs/det/det_r50_vd_dcn_fce_ctw.yml -o Global.pretrained_model=./det_r50_dcn_fce_ctw_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_fce
```
FCE文本检测模型推理,执行非弯曲文本检测,可以执行如下命令:
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_fce/" --det_algorithm="FCE" --det_fce_box_type=quad
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](../imgs_results/det_res_img_10_fce.jpg)
如果想执行弯曲文本检测,可以执行如下命令:
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img623.jpg" --det_model_dir="./inference/det_fce/" --det_algorithm="FCE" --det_fce_box_type=poly
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](../imgs_results/det_res_img623_fce.jpg)
**注意**:由于CTW1500数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
<a name="4-2"></a>
### 4.2 C++推理
由于后处理暂未使用CPP编写,FCE文本检测模型暂不支持CPP推理。
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂未支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂未支持
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@InProceedings{zhu2021fourier,
title={Fourier Contour Embedding for Arbitrary-Shaped Text Detection},
author={Yiqin Zhu and Jianyong Chen and Lingyu Liang and Zhanghui Kuang and Lianwen Jin and Wayne Zhang},
year={2021},
booktitle = {CVPR}
}
```
# PSENet
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [Shape robust text detection with progressive scale expansion network](https://arxiv.org/abs/1903.12473)
> Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai
> CVPR, 2019
在ICDAR2015文本检测公开数据集上,算法复现效果如下:
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- | --- |
|PSE| ResNet50_vd | [configs/det/det_r50_vd_pse.yml](../../configs/det/det_r50_vd_pse.yml)| 85.81% |79.53%|82.55%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE| MobileNetV3| [configs/det/det_mv3_pse.yml](../../configs/det/det_mv3_pse.yml) | 82.20% |70.48%|75.89%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
上述PSE模型使用ICDAR2015文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)
数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将PSE文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar) ),可以使用如下命令进行转换:
```shell
python3 tools/export_model.py -c configs/det/det_r50_vd_pse.yml -o Global.pretrained_model=./det_r50_vd_pse_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_pse
```
PSE文本检测模型推理,执行非弯曲文本检测,可以执行如下命令:
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=quad
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](../imgs_results/det_res_img_10_pse.jpg)
如果想执行弯曲文本检测,可以执行如下命令:
```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=poly
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
![](../imgs_results/det_res_img_10_pse_poly.jpg)
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文或弯曲文本图像检测效果会比较差。
<a name="4-2"></a>
### 4.2 C++推理
由于后处理暂未使用CPP编写,PSE文本检测模型暂不支持CPP推理。
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂未支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂未支持
<a name="5"></a>
## 5. FAQ
## 引用
```bibtex
@inproceedings{wang2019shape,
title={Shape robust text detection with progressive scale expansion network},
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={9336--9345},
year={2019}
}
```
......@@ -6,17 +6,17 @@
- [中文文档文字识别](#中文文档文字识别)
- [ICDAR2019-ArT](#ICDAR2019-ArT)
除了开源数据,用户还可使用合成工具自行合成,可参考[数据合成工具](./data_synthesis.md)
除了开源数据,用户还可使用合成工具自行合成,可参考[数据合成工具](../data_synthesis.md)
如果需要标注自己的数据,可参考[数据标注工具](./data_annotation.md)
如果需要标注自己的数据,可参考[数据标注工具](../data_annotation.md)
<a name="ICDAR2019-LSVT"></a>
#### 1、ICDAR2019-LSVT
- **数据来源**:https://ai.baidu.com/broad/introduction?dataset=lsvt
- **数据简介**: 共45w中文街景图像,包含5w(2w测试+3w训练)全标注数据(文本坐标+文本内容),40w弱标注数据(仅文本内容),如下图所示:
![](../datasets/LSVT_1.jpg)
![](../../datasets/LSVT_1.jpg)
(a) 全标注数据
![](../datasets/LSVT_2.jpg)
![](../../datasets/LSVT_2.jpg)
(b) 弱标注数据
- **下载地址**:https://ai.baidu.com/broad/download?dataset=lsvt
- **说明**:其中,test数据集的label目前没有开源,如要评估结果,可以去官网提交:https://rrc.cvc.uab.es/?ch=16
......@@ -25,16 +25,16 @@
#### 2、ICDAR2017-RCTW-17
- **数据来源**:https://rctw.vlrlab.net/
- **数据简介**:共包含12,000+图像,大部分图片是通过手机摄像头在野外采集的。有些是截图。这些图片展示了各种各样的场景,包括街景、海报、菜单、室内场景和手机应用程序的截图。
![](../datasets/rctw.jpg)
![](../../datasets/rctw.jpg)
- **下载地址**:https://rctw.vlrlab.net/dataset/
<a name="中文街景文字识别"></a>
#### 3、中文街景文字识别
#### 3、中文街景文字识别
- **数据来源**:https://aistudio.baidu.com/aistudio/competition/detail/8
- **数据简介**:ICDAR2019-LSVT行识别任务,共包括29万张图片,其中21万张图片作为训练集(带标注),8万张作为测试集(无标注)。数据集采自中国街景,并由街景图片中的文字行区域(例如店铺标牌、地标等等)截取出来而形成。所有图像都经过一些预处理,将文字区域利用仿射变化,等比映射为一张高为48像素的图片,如图所示:
![](../datasets/ch_street_rec_1.png)
![](../../datasets/ch_street_rec_1.png)
(a) 标注:魅派集成吊顶
![](../datasets/ch_street_rec_2.png)
![](../../datasets/ch_street_rec_2.png)
(b) 标注:母婴用品连锁
- **下载地址**
https://aistudio.baidu.com/aistudio/datasetdetail/8429
......@@ -48,15 +48,15 @@ https://aistudio.baidu.com/aistudio/datasetdetail/8429
- 包含汉字、英文字母、数字和标点共5990个字符(字符集合:https://github.com/YCG09/chinese_ocr/blob/master/train/char_std_5990.txt )
- 每个样本固定10个字符,字符随机截取自语料库中的句子
- 图片分辨率统一为280x32
![](../datasets/ch_doc1.jpg)
![](../datasets/ch_doc3.jpg)
![](../../datasets/ch_doc1.jpg)
![](../../datasets/ch_doc3.jpg)
- **下载地址**:https://pan.baidu.com/s/1QkI7kjah8SPHwOQ40rS1Pw (密码:lu7m)
<a name="ICDAR2019-ArT"></a>
#### 5、ICDAR2019-ArT
- **数据来源**:https://ai.baidu.com/broad/introduction?dataset=art
- **数据简介**:共包含10,166张图像,训练集5603图,测试集4563图。由Total-Text、SCUT-CTW1500、Baidu Curved Scene Text (ICDAR2019-LSVT部分弯曲数据) 三部分组成,包含水平、多方向和弯曲等多种形状的文本。
![](../datasets/ArT.jpg)
![](../../datasets/ArT.jpg)
- **下载地址**:https://ai.baidu.com/broad/download?dataset=art
## 参考文献
......
......@@ -9,7 +9,7 @@
- **数据简介**
* 包含在线和离线两类手写数据,`HWDB1.0~1.2`总共有3895135个手写单字样本,分属7356类(7185个汉字和171个英文字母、数字、符号);`HWDB2.0~2.2`总共有5091页图像,分割为52230个文本行和1349414个文字。所有文字和文本样本均存为灰度图像。部分单字样本图片如下所示。
![](../datasets/CASIA_0.jpg)
![](../../datasets/CASIA_0.jpg)
- **下载地址**:http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html
- **使用建议**:数据为单字,白色背景,可以大量合成文字行进行训练。白色背景可以处理成透明状态,方便添加各种背景。对于需要语义的情况,建议从真实语料出发,抽取单字组成文字行
......@@ -22,7 +22,7 @@
- **数据简介**: NIST19数据集适用于手写文档和字符识别的模型训练,从3600位作者的手写样本表格中提取得到,总共包含81万张字符图片。其中9张图片示例如下。
![](../datasets/nist_demo.png)
![](../../datasets/nist_demo.png)
- **下载地址**: [https://www.nist.gov/srd/nist-special-database-19](https://www.nist.gov/srd/nist-special-database-19)
......@@ -27,7 +27,7 @@
#### 2、CDLA数据集
- **数据来源**:https://github.com/buptlihang/CDLA
- **数据简介**publaynet数据集的训练集合中包含5000张图像,验证集合中包含1000张图像。总共包含10个类别,分别是: `Text, Title, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation`。部分图像以及标注框可视化如下所示。
- **数据简介**CDLA据集的训练集合中包含5000张图像,验证集合中包含1000张图像。总共包含10个类别,分别是: `Text, Title, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation`。部分图像以及标注框可视化如下所示。
<div align="center">
<img src="../datasets/CDLA_demo/val_0633.jpg" width="500">
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment