Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
abadf050
Unverified
Commit
abadf050
authored
May 03, 2022
by
Double_V
Committed by
GitHub
May 03, 2022
Browse files
Update PP-OCRv3_introduction.md
parent
e82f000a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
doc/doc_ch/PP-OCRv3_introduction.md
doc/doc_ch/PP-OCRv3_introduction.md
+2
-2
No files found.
doc/doc_ch/PP-OCRv3_introduction.md
View file @
abadf050
...
@@ -49,7 +49,7 @@ RSEFPN将PP-OCR检测模型的精度hmean从81.3%提升到84.5%。模型大小
...
@@ -49,7 +49,7 @@ RSEFPN将PP-OCR检测模型的精度hmean从81.3%提升到84.5%。模型大小
-
在蒸馏的teacher模型精度提升方面,提出了LKPAN结构替换PP-OCRv2的FPN结构,并且使用ResNet50作为Backbone,更大的模型带来更多的精度提升。另外,对teacher模型使用
[
DML
](
https://arxiv.org/abs/1706.00384
)
蒸馏策略进一步提升teacher模型的精度。最终teacher的模型指标hmean从83.2%提升到了86.0%。
-
在蒸馏的teacher模型精度提升方面,提出了LKPAN结构替换PP-OCRv2的FPN结构,并且使用ResNet50作为Backbone,更大的模型带来更多的精度提升。另外,对teacher模型使用
[
DML
](
https://arxiv.org/abs/1706.00384
)
蒸馏策略进一步提升teacher模型的精度。最终teacher的模型指标hmean从83.2%提升到了86.0%。
*注:
!
[PP-OCRv2的FPN结构](https://github.com/PaddlePaddle/PaddleOCR/blob/77acb3bfe51c8a46c684527f73cd218cefedb4a3/ppocr/modeling/necks/db_fpn.py#L107)对DB算法FPN结构做了轻量级设计*
*注:[PP-OCRv2的FPN结构](https://github.com/PaddlePaddle/PaddleOCR/blob/77acb3bfe51c8a46c684527f73cd218cefedb4a3/ppocr/modeling/necks/db_fpn.py#L107)对DB算法FPN结构做了轻量级设计*
LKPAN的网络结构如下图所示:
LKPAN的网络结构如下图所示:
...
@@ -57,7 +57,7 @@ LKPAN的网络结构如下图所示:
...
@@ -57,7 +57,7 @@ LKPAN的网络结构如下图所示:
<img
src=
"../ppocr_v3/LKPAN.png"
width=
"800"
>
<img
src=
"../ppocr_v3/LKPAN.png"
width=
"800"
>
</div>
</div>
LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级
!
[
PAN
](
https://arxiv.org/pdf/1803.01534.pdf
)
结构。在LKPAN的path augmentation中,使用kernel size为
`9*9`
的卷积;更大的kernel size意味着更大的感受野,更容易检测大字体的文字以及极端长宽比的文字。LKPAN将base检测模型的精度hmean从81.3%提升到84.9%。
LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级
[
PAN
](
https://arxiv.org/pdf/1803.01534.pdf
)
结构。在LKPAN的path augmentation中,使用kernel size为
`9*9`
的卷积;更大的kernel size意味着更大的感受野,更容易检测大字体的文字以及极端长宽比的文字。LKPAN将base检测模型的精度hmean从81.3%提升到84.9%。
*注:LKPAN相比RSEFPN有更多的精度提升,但是考虑到模型大小和预测速度等因素,在student模型中使用RSEFPN。*
*注:LKPAN相比RSEFPN有更多的精度提升,但是考虑到模型大小和预测速度等因素,在student模型中使用RSEFPN。*
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment