Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
8c173feb
Commit
8c173feb
authored
Apr 27, 2022
by
LDOUBLEV
Browse files
add fepan lite
parent
2b3f89f0
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
106 additions
and
19 deletions
+106
-19
ppocr/modeling/necks/__init__.py
ppocr/modeling/necks/__init__.py
+3
-3
ppocr/modeling/necks/db_fpn.py
ppocr/modeling/necks/db_fpn.py
+103
-16
No files found.
ppocr/modeling/necks/__init__.py
View file @
8c173feb
...
...
@@ -16,7 +16,7 @@ __all__ = ['build_neck']
def
build_neck
(
config
):
from
.db_fpn
import
DBFPN
,
CAFPN
,
FEPAN
from
.db_fpn
import
DBFPN
,
CAFPN
,
FEPAN
,
FEPANLite
from
.east_fpn
import
EASTFPN
from
.sast_fpn
import
SASTFPN
from
.rnn
import
SequenceEncoder
...
...
@@ -26,8 +26,8 @@ def build_neck(config):
from
.fce_fpn
import
FCEFPN
from
.pren_fpn
import
PRENFPN
support_dict
=
[
'FPN'
,
'FCEFPN'
,
'FEPAN'
,
'DBFPN'
,
'CAFPN'
,
'EASTFPN'
,
'SASTFPN'
,
'SequenceEncoder'
,
'PGFPN'
,
'TableFPN'
,
'PRENFPN'
'FPN'
,
'FCEFPN'
,
'FEPAN'
,
'FEPANLite'
,
'DBFPN'
,
'CAFPN'
,
'EASTFPN'
,
'SASTFPN'
,
'SequenceEncoder'
,
'PGFPN'
,
'TableFPN'
,
'PRENFPN'
]
module_name
=
config
.
pop
(
'name'
)
...
...
ppocr/modeling/necks/db_fpn.py
View file @
8c173feb
...
...
@@ -30,7 +30,7 @@ sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))
from
ppocr.modeling.backbones.det_mobilenet_v3
import
SEModule
class
Conv
BNLayer
(
nn
.
Layer
):
class
DS
Conv
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
...
...
@@ -40,7 +40,7 @@ class ConvBNLayer(nn.Layer):
groups
=
None
,
if_act
=
True
,
act
=
"relu"
):
super
(
Conv
BNLayer
,
self
).
__init__
()
super
(
DS
Conv
,
self
).
__init__
()
if
groups
==
None
:
groups
=
in_channels
self
.
if_act
=
if_act
...
...
@@ -268,23 +268,109 @@ class FEPAN(nn.Layer):
self
.
out_channels
=
out_channels
weight_attr
=
paddle
.
nn
.
initializer
.
KaimingUniform
()
self
.
ins_conv
=
[]
self
.
inp_conv
=
[]
self
.
ins_conv
=
nn
.
LayerList
()
self
.
inp_conv
=
nn
.
LayerList
()
# pan head
self
.
pan_head_conv
=
[]
self
.
pan_lat_conv
=
[]
self
.
pan_head_conv
=
nn
.
LayerList
()
self
.
pan_lat_conv
=
nn
.
LayerList
()
for
i
in
range
(
len
(
in_channels
)):
self
.
ins_conv
.
append
(
nn
.
Conv2D
(
in_channels
=
in_channels
[
0
],
in_channels
=
in_channels
[
i
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
))
self
.
inp_conv
.
append
(
ConvBNLayer
(
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
9
,
padding
=
4
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
))
if
i
>
0
:
self
.
pan_head_conv
.
append
(
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
//
4
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
stride
=
2
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
))
self
.
pan_lat_conv
.
append
(
nn
.
Conv2D
(
in_channels
=
self
.
out_channels
//
4
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
9
,
padding
=
4
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
))
def
forward
(
self
,
x
):
c2
,
c3
,
c4
,
c5
=
x
in5
=
self
.
ins_conv
[
3
](
c5
)
in4
=
self
.
ins_conv
[
2
](
c4
)
in3
=
self
.
ins_conv
[
1
](
c3
)
in2
=
self
.
ins_conv
[
0
](
c2
)
out4
=
in4
+
F
.
upsample
(
in5
,
scale_factor
=
2
,
mode
=
"nearest"
,
align_mode
=
1
)
# 1/16
out3
=
in3
+
F
.
upsample
(
out4
,
scale_factor
=
2
,
mode
=
"nearest"
,
align_mode
=
1
)
# 1/8
out2
=
in2
+
F
.
upsample
(
out3
,
scale_factor
=
2
,
mode
=
"nearest"
,
align_mode
=
1
)
# 1/4
f5
=
self
.
inp_conv
[
3
](
in5
)
f4
=
self
.
inp_conv
[
2
](
out4
)
f3
=
self
.
inp_conv
[
1
](
out3
)
f2
=
self
.
inp_conv
[
0
](
out2
)
pan3
=
f3
+
self
.
pan_head_conv
[
0
](
f2
)
pan4
=
f4
+
self
.
pan_head_conv
[
1
](
pan3
)
pan5
=
f5
+
self
.
pan_head_conv
[
2
](
pan4
)
p2
=
self
.
pan_lat_conv
[
0
](
f2
)
p3
=
self
.
pan_lat_conv
[
1
](
pan3
)
p4
=
self
.
pan_lat_conv
[
2
](
pan4
)
p5
=
self
.
pan_lat_conv
[
3
](
pan5
)
p5
=
F
.
upsample
(
p5
,
scale_factor
=
8
,
mode
=
"nearest"
,
align_mode
=
1
)
p4
=
F
.
upsample
(
p4
,
scale_factor
=
4
,
mode
=
"nearest"
,
align_mode
=
1
)
p3
=
F
.
upsample
(
p3
,
scale_factor
=
2
,
mode
=
"nearest"
,
align_mode
=
1
)
fuse
=
paddle
.
concat
([
p5
,
p4
,
p3
,
p2
],
axis
=
1
)
return
fuse
class
FEPANLite
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
**
kwargs
):
super
(
FEPANLite
,
self
).
__init__
()
self
.
out_channels
=
out_channels
weight_attr
=
paddle
.
nn
.
initializer
.
KaimingUniform
()
self
.
ins_conv
=
nn
.
LayerList
()
self
.
inp_conv
=
nn
.
LayerList
()
# pan head
self
.
pan_head_conv
=
nn
.
LayerList
()
self
.
pan_lat_conv
=
nn
.
LayerList
()
for
i
in
range
(
len
(
in_channels
)):
self
.
ins_conv
.
append
(
nn
.
Conv2D
(
in_channels
=
in_channels
[
i
],
out_channels
=
self
.
out_channels
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
))
self
.
inp_conv
.
append
(
DSConv
(
in_channels
=
self
.
out_channels
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
9
,
...
...
@@ -300,8 +386,9 @@ class FEPAN(nn.Layer):
stride
=
2
,
weight_attr
=
ParamAttr
(
initializer
=
weight_attr
),
bias_attr
=
False
))
self
.
pan_lat_conv
.
append
(
Conv
BNLayer
(
DS
Conv
(
in_channels
=
self
.
out_channels
//
4
,
out_channels
=
self
.
out_channels
//
4
,
kernel_size
=
9
,
...
...
@@ -327,14 +414,14 @@ class FEPAN(nn.Layer):
f3
=
self
.
inp_conv
[
1
](
out3
)
f2
=
self
.
inp_conv
[
0
](
out2
)
pan3
=
f3
+
self
.
pan_head
[
0
](
f2
)
pan4
=
f4
+
self
.
pan_head
[
1
](
pan3
)
pan5
=
f5
+
self
.
pan_head
[
2
](
pan4
)
pan3
=
f3
+
self
.
pan_head
_conv
[
0
](
f2
)
pan4
=
f4
+
self
.
pan_head
_conv
[
1
](
pan3
)
pan5
=
f5
+
self
.
pan_head
_conv
[
2
](
pan4
)
p2
=
self
.
pan_lat
[
0
](
f2
)
p3
=
self
.
pan_lat
[
1
](
pan3
)
p4
=
self
.
pan_lat
[
2
](
pan4
)
p5
=
self
.
pan_lat
[
3
](
pan5
)
p2
=
self
.
pan_lat
_conv
[
0
](
f2
)
p3
=
self
.
pan_lat
_conv
[
1
](
pan3
)
p4
=
self
.
pan_lat
_conv
[
2
](
pan4
)
p5
=
self
.
pan_lat
_conv
[
3
](
pan5
)
p5
=
F
.
upsample
(
p5
,
scale_factor
=
8
,
mode
=
"nearest"
,
align_mode
=
1
)
p4
=
F
.
upsample
(
p4
,
scale_factor
=
4
,
mode
=
"nearest"
,
align_mode
=
1
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment