Unverified Commit 56c6c3ae authored by xiaoting's avatar xiaoting Committed by GitHub
Browse files

Merge pull request #1 from LDOUBLEV/upload

Upload PaddleOCR code 
parents e27cf9a2 338ba3ee
- repo: https://github.com/PaddlePaddle/mirrors-yapf.git
sha: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks:
- id: yapf
files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: a11d9314b22d8f8c7556443875b731ef05965464
hooks:
- id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
files: (?!.*paddle)^.*$
- id: end-of-file-fixer
files: \.md$
- id: trailing-whitespace
files: \.md$
- repo: https://github.com/Lucas-C/pre-commit-hooks
sha: v1.0.1
hooks:
- id: forbid-crlf
files: \.md$
- id: remove-crlf
files: \.md$
- id: forbid-tabs
files: \.md$
- id: remove-tabs
files: \.md$
- repo: local
hooks:
- id: clang-format
name: clang-format
description: Format files with ClangFormat
entry: bash .clang_format.hook -i
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|cuh|proto)$
[style]
based_on_style = pep8
column_limit = 80
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.db_process,DBProcessTrain
num_workers: 8
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.db_process,DBProcessTest
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
test_image_shape: [736, 1280]
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.db_process,DBProcessTest
single_img_path:
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
test_image_shape: [736, 1280]
do_eval: True
Global:
algorithm: DB
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: output
save_epoch_step: 200
eval_batch_step: 5000
train_batch_size_per_card: 16
test_batch_size_per_card: 16
image_shape: [3, 640, 640]
reader_yml: ./configs/det/det_db_icdar15_reader.yml
pretrain_weights: ./pretrain_models/MobileNetV3_pretrained/MobileNetV3_large_x0_5_pretrained/
save_res_path: ./output/predicts_db.txt
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.det_db_head,DBHead
model_name: large
k: 50
inner_channels: 96
out_channels: 2
Loss:
function: ppocr.modeling.losses.det_db_loss,DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.db_postprocess,DBPostProcess
thresh: 0.3
box_thresh: 0.7
max_candidates: 1000
unclip_ratio: 1.5
\ No newline at end of file
Global:
algorithm: DB
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: output
save_epoch_step: 200
eval_batch_step: 5000
train_batch_size_per_card: 8
test_batch_size_per_card: 16
image_shape: [3, 640, 640]
reader_yml: ./configs/det/det_db_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_pretrained/
save_res_path: ./output/predicts_db.txt
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_db_head,DBHead
model_name: large
k: 50
inner_channels: 256
out_channels: 2
Loss:
function: ppocr.modeling.losses.det_db_loss,DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.db_postprocess,DBPostProcess
thresh: 0.3
box_thresh: 0.7
max_candidates: 1000
unclip_ratio: 1.5
\ No newline at end of file
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.east_process,EASTProcessTrain
num_workers: 8
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.east_process,EASTProcessTest
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.east_process,EASTProcessTest
single_img_path:
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
do_eval: True
Global:
algorithm: EAST
use_gpu: true
epoch_num: 100000
log_smooth_window: 20
print_batch_step: 5
save_model_dir: output
save_epoch_step: 200
eval_batch_step: 5000
train_batch_size_per_card: 16
test_batch_size_per_card: 16
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_east_icdar15_reader.yml
pretrain_weights: ./pretrain_models/MobileNetV3_pretrained/MobileNetV3_large_x0_5_pretrained/
save_res_path: ./output/predicts_east.txt
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.det_east_head,EASTHead
model_name: small
Loss:
function: ppocr.modeling.losses.det_east_loss,EASTLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.east_postprocess,EASTPostPocess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
\ No newline at end of file
Global:
algorithm: EAST
use_gpu: true
epoch_num: 100000
log_smooth_window: 20
print_batch_step: 5
save_model_dir: output
save_epoch_step: 200
eval_batch_step: 5000
train_batch_size_per_card: 8
test_batch_size_per_card: 16
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_east_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_pretrained/
save_res_path: ./output/predicts_east.txt
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_east_head,EASTHead
model_name: large
Loss:
function: ppocr.modeling.losses.det_east_loss,EASTLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.east_postprocess,EASTPostPocess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
\ No newline at end of file
TrainReader:
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
num_workers: 8
lmdb_sets_dir: ./train_data/data_lmdb_release/training/
EvalReader:
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
lmdb_sets_dir: ./train_data/data_lmdb_release/validation/
TestReader:
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
lmdb_sets_dir: ./train_data/data_lmdb_release/evaluation/
\ No newline at end of file
Global:
algorithm: CRNN
dataset: common
use_gpu: true
epoch_num: 300
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: ch
character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
loss_type: ctc
reader_yml: ./configs/rec/rec_chinese_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: small
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 48
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
TrainReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
num_workers: 8
img_set_dir: .
label_file_path: ./train_data/hard_label.txt
EvalReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
img_set_dir: .
label_file_path: ./train_data/label_val_all.txt
TestReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
infer_img: ./infer_img
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: Rosetta
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: reshape
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: RARE
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: attention
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: small
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_attention_head,AttentionPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Attention:
decoder_size: 96
word_vector_dim: 96
Loss:
function: ppocr.modeling.losses.rec_attention_loss,AttentionLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: STARNet
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: small
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: Rosetta
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: reshape
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: RARE
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: attention
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: large
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_attention_head,AttentionPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Attention:
decoder_size: 128
word_vector_dim: 128
Loss:
function: ppocr.modeling.losses.rec_attention_loss,AttentionLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
Global:
algorithm: STARNet
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: large
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment