"examples/vscode:/vscode.git/clone" did not exist on "999044596aa5118308753a3b77b97403378f0b3d"
Unverified Commit 514de3d5 authored by topduke's avatar topduke Committed by GitHub
Browse files

Merge branch 'PaddlePaddle:dygraph' into dygraph

parents 2ec4d525 523d2ce0
...@@ -1733,7 +1733,7 @@ class MainWindow(QMainWindow): ...@@ -1733,7 +1733,7 @@ class MainWindow(QMainWindow):
width, height = self.image.width(), self.image.height() width, height = self.image.width(), self.image.height()
for shape in self.canvas.lockedShapes: for shape in self.canvas.lockedShapes:
box = [[int(p[0] * width), int(p[1] * height)] for p in shape['ratio']] box = [[int(p[0] * width), int(p[1] * height)] for p in shape['ratio']]
assert len(box) == 4 # assert len(box) == 4
result = [(shape['transcription'], 1)] result = [(shape['transcription'], 1)]
result.insert(0, box) result.insert(0, box)
self.result_dic_locked.append(result) self.result_dic_locked.append(result)
......
...@@ -68,6 +68,8 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel ...@@ -68,6 +68,8 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
| Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model | | Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| Chinese and English ultra-lightweight PP-OCRv3 model(16.2M) | ch_PP-OCRv3_xx | Mobile & Server | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
| English ultra-lightweight PP-OCRv3 model(13.4M) | en_PP-OCRv3_xx | Mobile & Server | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
| Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) | ch_PP-OCRv2_xx |Mobile & Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)| | Chinese and English ultra-lightweight PP-OCRv2 model(11.6M) | ch_PP-OCRv2_xx |Mobile & Server|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)| [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar)|
| Chinese and English ultra-lightweight PP-OCR model (9.4M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) | | Chinese and English ultra-lightweight PP-OCR model (9.4M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
| Chinese and English general PP-OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) | | Chinese and English general PP-OCR model (143.4M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
......
...@@ -71,6 +71,8 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ...@@ -71,6 +71,8 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
| 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 | | 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 中英文超轻量PP-OCRv3模型(16.2M) | ch_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
| 英文超轻量PP-OCRv3模型(13.4M) | en_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) | | 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) | | 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) | | 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
......
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
<center><img src='https://ai-studio-static-online.cdn.bcebos.com/9bd844b970f94e5ba0bc0c5799bd819ea9b1861bb306471fabc2d628864d418e'></center> <center><img src='https://ai-studio-static-online.cdn.bcebos.com/9bd844b970f94e5ba0bc0c5799bd819ea9b1861bb306471fabc2d628864d418e'></center>
<center>图1 多模态表单识别流程图</center> <center>图1 多模态表单识别流程图</center>
注:欢迎再AIStudio领取免费算力体验线上实训,项目链接: 多模态表单识别](https://aistudio.baidu.com/aistudio/projectdetail/3815918)(配备Tesla V100、A100等高级算力资源) 注:欢迎再AIStudio领取免费算力体验线上实训,项目链接: [多模态表单识别](https://aistudio.baidu.com/aistudio/projectdetail/3815918)(配备Tesla V100、A100等高级算力资源)
......
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/ch_db_mv3/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
name: DistillationModel
algorithm: Distillation
model_type: det
Models:
Student:
return_all_feats: false
model_type: det
algorithm: DB
Backbone:
name: ResNet
in_channels: 3
layers: 50
Neck:
name: LKPAN
out_channels: 256
Head:
name: DBHead
kernel_list: [7,2,2]
k: 50
Student2:
return_all_feats: false
model_type: det
algorithm: DB
Backbone:
name: ResNet
in_channels: 3
layers: 50
Neck:
name: LKPAN
out_channels: 256
Head:
name: DBHead
kernel_list: [7,2,2]
k: 50
Loss:
name: CombinedLoss
loss_config_list:
- DistillationDMLLoss:
model_name_pairs:
- ["Student", "Student2"]
maps_name: "thrink_maps"
weight: 1.0
act: "softmax"
model_name_pairs: ["Student", "Student2"]
key: maps
- DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Student2"]
# key: maps
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DistillationDBPostProcess
model_name: ["Student", "Student2"]
key: head_out
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DistillationMetric
base_metric_name: DetMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- CopyPaste:
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2
...@@ -71,7 +71,7 @@ PostProcess: ...@@ -71,7 +71,7 @@ PostProcess:
Metric: Metric:
name: RecMetric name: RecMetric
main_indicator: acc main_indicator: acc
ignore_space: True ignore_space: False
Train: Train:
dataset: dataset:
......
...@@ -129,7 +129,7 @@ Loss: ...@@ -129,7 +129,7 @@ Loss:
key: head_out key: head_out
multi_head: True multi_head: True
- DistillationSARLoss: - DistillationSARLoss:
weight: 1.0 weight: 0.5
model_name_list: ["Student", "Teacher"] model_name_list: ["Student", "Teacher"]
key: head_out key: head_out
multi_head: True multi_head: True
...@@ -145,7 +145,7 @@ Metric: ...@@ -145,7 +145,7 @@ Metric:
base_metric_name: RecMetric base_metric_name: RecMetric
main_indicator: acc main_indicator: acc
key: "Student" key: "Student"
ignore_space: True ignore_space: False
Train: Train:
dataset: dataset:
......
# Jetson部署PaddleOCR模型
本节介绍PaddleOCR在Jetson NX、TX2、nano、AGX等系列硬件的部署。
## 1. 环境准备
需要准备一台Jetson开发板,如果需要TensorRT预测,需准备好TensorRT环境,建议使用7.1.3版本的TensorRT;
1. Jetson安装PaddlePaddle
PaddlePaddle下载[链接](https://www.paddlepaddle.org.cn/inference/user_guides/download_lib.html#python)
请选择适合的您Jetpack版本、cuda版本、trt版本的安装包。
安装命令:
```shell
# 安装paddle,以paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl 为例
pip3 install -U paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl
```
2. 下载PaddleOCR代码并安装依赖
首先 clone PaddleOCR 代码:
```
git clone https://github.com/PaddlePaddle/PaddleOCR
```
然后,安装依赖:
```
cd PaddleOCR
pip3 install -r requirements.txt
```
*注:jetson硬件CPU较差,依赖安装较慢,请耐心等待*
## 2. 执行预测
[文档](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/ppocr_introduction.md#6-%E6%A8%A1%E5%9E%8B%E5%BA%93) 模型库中获取PPOCR模型,下面以PP-OCRv3模型为例,介绍在PPOCR模型在jetson上的使用方式:
下载并解压PP-OCRv3模型
```
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
```
执行文本检测预测:
```
cd PaddleOCR
python3 tools/infer/predict_det.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --image_dir=./doc/imgs/french_0.jpg --use_gpu=True
```
执行命令后在终端会打印出预测的信息,并在 `./inference_results/` 下保存可视化结果。
![](./images/det_res_french_0.jpg)
执行文本识别预测:
```
python3 tools/infer/predict_det.py --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs_words/en/word_2.png --use_gpu=True --rec_image_shape="3,48,320"
```
执行命令后在终端会打印出预测的信息,输出如下:
```
[2022/04/28 15:41:45] root INFO: Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.98084533)
```
执行文本检测+文本识别串联预测:
```
python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/ --use_gpu=True --rec_image_shape="3,48,320"
```
执行命令后在终端会打印出预测的信息,并在 `./inference_results/` 下保存可视化结果。
![](./images/00057937.jpg)
开启TRT预测只需要在以上命令基础上设置`--use_tensorrt=True`即可:
```
python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/00057937.jpg --use_gpu=True --use_tensorrt=True --rec_image_shape="3,48,320"
```
更多ppocr模型预测请参考[文档](../../doc/doc_ch/models_list.md)
# Jetson Deployment for PaddleOCR
This section introduces the deployment of PaddleOCR on Jetson NX, TX2, nano, AGX and other series of hardware.
## 1. Prepare Environment
You need to prepare a Jetson development hardware. If you need TensorRT, you need to prepare the TensorRT environment. It is recommended to use TensorRT version 7.1.3;
1. Install PaddlePaddle in Jetson
The PaddlePaddle download [link](https://www.paddlepaddle.org.cn/inference/user_guides/download_lib.html#python)
Please select the appropriate installation package for your Jetpack version, cuda version, and trt version. Here, we download paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl.
Install PaddlePaddle:
```shell
pip3 install -U paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl
```
2. Download PaddleOCR code and install dependencies
Clone the PaddleOCR code:
```
git clone https://github.com/PaddlePaddle/PaddleOCR
```
and install dependencies:
```
cd PaddleOCR
pip3 install -r requirements.txt
```
*Note: Jetson hardware CPU is poor, dependency installation is slow, please wait patiently*
## 2. Perform prediction
Obtain the PPOCR model from the [document](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/ppocr_introduction_en.md#6-model-zoo) model library. The following takes the PP-OCRv3 model as an example to introduce the use of the PPOCR model on Jetson:
Download and unzip the PP-OCRv3 models.
```
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
```
The text detection inference:
```
cd PaddleOCR
python3 tools/infer/predict_det.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --image_dir=./doc/imgs/french_0.jpg --use_gpu=True
```
After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the `./inference_results/` directory.
![](./images/det_res_french_0.jpg)
The text recognition inference:
```
python3 tools/infer/predict_det.py --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs_words/en/word_2.png --use_gpu=True --rec_image_shape="3,48,320"
```
After executing the command, the predicted information will be printed on the terminal, and the output is as follows:
```
[2022/04/28 15:41:45] root INFO: Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.98084533)
```
The text detection and text recognition inference:
```
python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/00057937.jpg --use_gpu=True --rec_image_shape="3,48,320"
```
After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the `./inference_results/` directory.
![](./images/00057937.jpg)
To enable TRT prediction, you only need to set `--use_tensorrt=True` on the basis of the above command:
```
python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/ --rec_image_shape="3,48,320" --use_gpu=True --use_tensorrt=True
```
For more ppocr model predictions, please refer to[document](../../doc/doc_en/models_list_en.md)
...@@ -208,6 +208,8 @@ Execute the built executable file: ...@@ -208,6 +208,8 @@ Execute the built executable file:
./build/ppocr [--param1] [--param2] [...] ./build/ppocr [--param1] [--param2] [...]
``` ```
**Note**:ppocr uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3, 48, 320`, so if you use the recognition function, you need to add the parameter `--rec_img_h=48`, if you do not use the default `PP-OCRv3` model, you do not need to set this parameter.
Specifically, Specifically,
##### 1. det+cls+rec: ##### 1. det+cls+rec:
...@@ -220,6 +222,7 @@ Specifically, ...@@ -220,6 +222,7 @@ Specifically,
--det=true \ --det=true \
--rec=true \ --rec=true \
--cls=true \ --cls=true \
--rec_img_h=48\
``` ```
##### 2. det+rec: ##### 2. det+rec:
...@@ -231,6 +234,7 @@ Specifically, ...@@ -231,6 +234,7 @@ Specifically,
--det=true \ --det=true \
--rec=true \ --rec=true \
--cls=false \ --cls=false \
--rec_img_h=48\
``` ```
##### 3. det ##### 3. det
...@@ -250,6 +254,7 @@ Specifically, ...@@ -250,6 +254,7 @@ Specifically,
--det=false \ --det=false \
--rec=true \ --rec=true \
--cls=true \ --cls=true \
--rec_img_h=48\
``` ```
##### 5. rec ##### 5. rec
...@@ -260,6 +265,7 @@ Specifically, ...@@ -260,6 +265,7 @@ Specifically,
--det=false \ --det=false \
--rec=true \ --rec=true \
--cls=false \ --cls=false \
--rec_img_h=48\
``` ```
##### 6. cls ##### 6. cls
...@@ -335,10 +341,10 @@ The detection results will be shown on the screen, which is as follows. ...@@ -335,10 +341,10 @@ The detection results will be shown on the screen, which is as follows.
```bash ```bash
predict img: ../../doc/imgs/12.jpg predict img: ../../doc/imgs/12.jpg
../../doc/imgs/12.jpg ../../doc/imgs/12.jpg
0 det boxes: [[79,553],[399,541],[400,573],[80,585]] rec text: 打浦路252935号 rec score: 0.933757 0 det boxes: [[74,553],[427,542],[428,571],[75,582]] rec text: 打浦路252935号 rec score: 0.947724
1 det boxes: [[31,509],[510,488],[511,529],[33,549]] rec text: 绿洲仕格维花园公寓 rec score: 0.951745 1 det boxes: [[23,507],[513,488],[515,529],[24,548]] rec text: 绿洲仕格维花园公寓 rec score: 0.993728
2 det boxes: [[181,456],[395,448],[396,480],[182,488]] rec text: 打浦路15号 rec score: 0.91956 2 det boxes: [[187,456],[399,448],[400,480],[188,488]] rec text: 打浦路15号 rec score: 0.964994
3 det boxes: [[43,413],[480,391],[481,428],[45,450]] rec text: 上海斯格威铂尔大酒店 rec score: 0.915914 3 det boxes: [[42,413],[483,391],[484,428],[43,450]] rec text: 上海斯格威铂尔大酒店 rec score: 0.980086
The detection visualized image saved in ./output//12.jpg The detection visualized image saved in ./output//12.jpg
``` ```
......
...@@ -213,6 +213,9 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir ...@@ -213,6 +213,9 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
本demo支持系统串联调用,也支持单个功能的调用,如,只使用检测或识别功能。 本demo支持系统串联调用,也支持单个功能的调用,如,只使用检测或识别功能。
**注意** ppocr默认使用`PP-OCRv3`模型,识别模型使用的输入shape为`3,48,320`, 因此如果使用识别功能,需要添加参数`--rec_img_h=48`,如果不使用默认的`PP-OCRv3`模型,则无需设置该参数。
运行方式: 运行方式:
```shell ```shell
./build/ppocr [--param1] [--param2] [...] ./build/ppocr [--param1] [--param2] [...]
...@@ -229,6 +232,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir ...@@ -229,6 +232,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=true \ --det=true \
--rec=true \ --rec=true \
--cls=true \ --cls=true \
--rec_img_h=48\
``` ```
##### 2. 检测+识别: ##### 2. 检测+识别:
...@@ -240,6 +244,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir ...@@ -240,6 +244,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=true \ --det=true \
--rec=true \ --rec=true \
--cls=false \ --cls=false \
--rec_img_h=48\
``` ```
##### 3. 检测: ##### 3. 检测:
...@@ -259,6 +264,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir ...@@ -259,6 +264,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=false \ --det=false \
--rec=true \ --rec=true \
--cls=true \ --cls=true \
--rec_img_h=48\
``` ```
##### 5. 识别: ##### 5. 识别:
...@@ -269,6 +275,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir ...@@ -269,6 +275,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=false \ --det=false \
--rec=true \ --rec=true \
--cls=false \ --cls=false \
--rec_img_h=48\
``` ```
##### 6. 分类: ##### 6. 分类:
...@@ -343,10 +350,10 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir ...@@ -343,10 +350,10 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
```bash ```bash
predict img: ../../doc/imgs/12.jpg predict img: ../../doc/imgs/12.jpg
../../doc/imgs/12.jpg ../../doc/imgs/12.jpg
0 det boxes: [[79,553],[399,541],[400,573],[80,585]] rec text: 打浦路252935号 rec score: 0.933757 0 det boxes: [[74,553],[427,542],[428,571],[75,582]] rec text: 打浦路252935号 rec score: 0.947724
1 det boxes: [[31,509],[510,488],[511,529],[33,549]] rec text: 绿洲仕格维花园公寓 rec score: 0.951745 1 det boxes: [[23,507],[513,488],[515,529],[24,548]] rec text: 绿洲仕格维花园公寓 rec score: 0.993728
2 det boxes: [[181,456],[395,448],[396,480],[182,488]] rec text: 打浦路15号 rec score: 0.91956 2 det boxes: [[187,456],[399,448],[400,480],[188,488]] rec text: 打浦路15号 rec score: 0.964994
3 det boxes: [[43,413],[480,391],[481,428],[45,450]] rec text: 上海斯格威铂尔大酒店 rec score: 0.915914 3 det boxes: [[42,413],[483,391],[484,428],[43,450]] rec text: 上海斯格威铂尔大酒店 rec score: 0.980086
The detection visualized image saved in ./output//12.jpg The detection visualized image saved in ./output//12.jpg
``` ```
......
...@@ -22,9 +22,7 @@ ...@@ -22,9 +22,7 @@
### 1. 安装PaddleSlim ### 1. 安装PaddleSlim
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git pip3 install paddleslim==2.2.2
cd PaddleSlim
python setup.py install
``` ```
### 2. 准备训练好的模型 ### 2. 准备训练好的模型
...@@ -43,7 +41,15 @@ python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3 ...@@ -43,7 +41,15 @@ python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
tar -xf ch_ppocr_mobile_v2.0_det_train.tar tar -xf ch_ppocr_mobile_v2.0_det_train.tar
python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
```
模型蒸馏和模型量化可以同时使用,以PPOCRv3检测模型为例:
```
# 下载检测预训练模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar xf https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
python deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3_det/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model='./ch_PP-OCRv3_det_distill_train/best_accuracy' Global.save_model_dir=./output/quant_model_distill/
``` ```
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。 如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
......
...@@ -25,9 +25,7 @@ After training, if you want to further compress the model size and accelerate th ...@@ -25,9 +25,7 @@ After training, if you want to further compress the model size and accelerate th
### 1. Install PaddleSlim ### 1. Install PaddleSlim
```bash ```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git pip3 install paddleslim==2.2.2
cd PaddlSlim
python setup.py install
``` ```
...@@ -52,6 +50,17 @@ python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3 ...@@ -52,6 +50,17 @@ python deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3
``` ```
Model distillation and model quantization can be used at the same time, taking the PPOCRv3 detection model as an example:
```
# download provided model
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar xf https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
python deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3_det/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model='./ch_PP-OCRv3_det_distill_train/best_accuracy' Global.save_model_dir=./output/quant_model_distill/
```
If you want to quantify the text recognition model, you can modify the configuration file and loaded model parameters.
### 4. Export inference model ### 4. Export inference model
Once we got the model after pruning and fine-tuning, we can export it as an inference model for the deployment of predictive tasks: Once we got the model after pruning and fine-tuning, we can export it as an inference model for the deployment of predictive tasks:
......
...@@ -17,9 +17,9 @@ import sys ...@@ -17,9 +17,9 @@ import sys
__dir__ = os.path.dirname(os.path.abspath(__file__)) __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..'))) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append( sys.path.insert(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools'))) 0, os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
import argparse import argparse
...@@ -129,7 +129,6 @@ def main(): ...@@ -129,7 +129,6 @@ def main():
quanter.quantize(model) quanter.quantize(model)
load_model(config, model) load_model(config, model)
model.eval()
# build metric # build metric
eval_class = build_metric(config['Metric']) eval_class = build_metric(config['Metric'])
...@@ -142,6 +141,7 @@ def main(): ...@@ -142,6 +141,7 @@ def main():
# start eval # start eval
metric = program.eval(model, valid_dataloader, post_process_class, metric = program.eval(model, valid_dataloader, post_process_class,
eval_class, model_type, use_srn) eval_class, model_type, use_srn)
model.eval()
logger.info('metric eval ***************') logger.info('metric eval ***************')
for k, v in metric.items(): for k, v in metric.items():
...@@ -156,7 +156,6 @@ def main(): ...@@ -156,7 +156,6 @@ def main():
if arch_config["algorithm"] in ["Distillation", ]: # distillation model if arch_config["algorithm"] in ["Distillation", ]: # distillation model
archs = list(arch_config["Models"].values()) archs = list(arch_config["Models"].values())
for idx, name in enumerate(model.model_name_list): for idx, name in enumerate(model.model_name_list):
model.model_list[idx].eval()
sub_model_save_path = os.path.join(save_path, name, "inference") sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(model.model_list[idx], archs[idx], export_single_model(model.model_list[idx], archs[idx],
sub_model_save_path, logger, quanter) sub_model_save_path, logger, quanter)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment