Commit 4c6b03ad authored by Leif's avatar Leif
Browse files

Merge remote-tracking branch 'origin/release/2.5' into release2.5

parents edad6e7c 77331549
......@@ -8,7 +8,7 @@ PPOCRLabelv2 is a semi-automatic graphic annotation tool suitable for OCR field,
| :-------------------------------------------------: | :--------------------------------------------: |
| <img src="./data/gif/steps_en.gif" width="80%"/> | <img src="./data/gif/table.gif" width="100%"/> |
| **irregular text annotation** | **key information annotation** |
| <img src="./data/gif/multi-point.gif" width="80%"/> | <img src="./data/gif/kie.gif" width="300%"/> |
| <img src="./data/gif/multi-point.gif" width="80%"/> | <img src="./data/gif/kie.gif" width="100%"/> |
### Recent Update
......
......@@ -8,7 +8,7 @@ PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置P
| :---------------------------------------------------: | :----------------------------------------------: |
| <img src="./data/gif/steps_en.gif" width="80%"/> | <img src="./data/gif/table.gif" width="100%"/> |
| **不规则文本标注** | **关键信息标注** |
| <img src="./data/gif/multi-point.gif" width="80%"/> | <img src="./data/gif/kie.gif" width="300%"/> |
| <img src="./data/gif/multi-point.gif" width="80%"/> | <img src="./data/gif/kie.gif" width="100%"/> |
#### 近期更新
......
......@@ -47,7 +47,7 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
![](./doc/features_en.png)
> It is recommended to start with the “quick experience” in the document tutorial
> It is recommended to start with the “quick start” in the document tutorial
## Quick Experience
......@@ -63,10 +63,11 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
<a name="Community"></a>
## Community
## Community👬
- **Join us**👬: Scan the QR code below with your Wechat, you can join the official technical discussion group. Looking forward to your participation.
- For international developers, we regard [PaddleOCR Discussions](https://github.com/PaddlePaddle/PaddleOCR/discussions) as our international community platform. All ideas and questions can be discussed here in English.
- For Chinese develops, Scan the QR code below with your Wechat, you can join the official technical discussion group. For richer community content, please refer to [中文README](README_ch.md), looking forward to your participation.
<div align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG" width = "200" height = "200" />
......
......@@ -29,15 +29,9 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- **🔥2022.5.25~26 OCR产业应用两日直播课**
- 25日:车牌识别产业应用实战
- 26日:一招搞定工业常见数码管、PCB字符识别
- 25日:车牌识别产业应用实战[AI Studio项目链接](https://aistudio.baidu.com/aistudio/projectdetail/3919091?contributionType=1)
- 26日:一招搞定工业常见数码管、PCB字符识别(AI Studio项目链接:[数码管识别](https://aistudio.baidu.com/aistudio/projectdetail/4049044?contributionType=1)[PCB字符识别](https://aistudio.baidu.com/aistudio/projectdetail/4008973)
扫描下方二维码填写问卷后进入群聊,获取直播链接!
<div align="center">
<img src="https://user-images.githubusercontent.com/50011306/170023861-38814d84-b35a-4102-94d9-28482f9a39f8.png" width = "150" height = "150" />
</div>
- **🔥2022.5.9 发布PaddleOCR [release/2.5](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.5)**
- 发布[PP-OCRv3](./doc/doc_ch/ppocr_introduction.md#pp-ocrv3),速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上;
- 发布半自动标注工具[PPOCRLabelv2](./PPOCRLabel):新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能;
......@@ -75,11 +69,10 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
<a name="开源社区"></a>
## 开源社区
- **项目合作📑:** 如果您是企业开发者且有明确的OCR垂类应用需求,填写[问卷](https://paddle.wjx.cn/vj/QwF7GKw.aspx)后可免费与官方团队展开不同层次的合作。
- **加入社区👬:** 微信扫描二维码并填写问卷之后,加入交流群领取福利
- **获取PaddleOCR最新发版解说《OCR超强技术详解与产业应用实战》系列直播课回放链接**
- **10G重磅OCR学习大礼包:**《动手学OCR》电子书,配套讲解视频和notebook项目;66篇OCR相关顶会前沿论文打包放送,包括CVPR、AAAI、IJCAI、ICCV等;PaddleOCR历次发版直播课视频;OCR社区优秀开发者项目分享视频。
- **社区贡献**🏅️:[社区贡献](./doc/doc_ch/thirdparty.md)文档中包含了社区用户**使用PaddleOCR开发的各种工具、应用**以及**为PaddleOCR贡献的功能、优化的文档与代码**等,是官方为社区开发者打造的荣誉墙,也是帮助优质项目宣传的广播站。
- **社区常规赛**🎁:社区常规赛是面向OCR开发者的积分赛事,覆盖文档、代码、模型和应用四大类型,以季度为单位评选并发放奖励,赛题详情与报名方法可参考[链接](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)
......
......@@ -65,7 +65,7 @@ Loss:
- ["Student", "Teacher"]
maps_name: "thrink_maps"
weight: 1.0
act: "softmax"
# act: None
model_name_pairs: ["Student", "Teacher"]
key: maps
- DistillationDBLoss:
......
......@@ -60,7 +60,7 @@ Loss:
- ["Student", "Student2"]
maps_name: "thrink_maps"
weight: 1.0
act: "softmax"
# act: None
model_name_pairs: ["Student", "Student2"]
key: maps
- DistillationDBLoss:
......
......@@ -47,7 +47,7 @@ str_to_cpu_mode(const std::string &cpu_mode) {
std::string upper_key;
std::transform(cpu_mode.cbegin(), cpu_mode.cend(), upper_key.begin(),
::toupper);
auto index = cpu_mode_map.find(upper_key);
auto index = cpu_mode_map.find(upper_key.c_str());
if (index == cpu_mode_map.end()) {
LOGE("cpu_mode not found %s", upper_key.c_str());
return paddle::lite_api::LITE_POWER_HIGH;
......@@ -116,4 +116,4 @@ Java_com_baidu_paddle_lite_demo_ocr_OCRPredictorNative_release(
ppredictor::OCR_PPredictor *ppredictor =
(ppredictor::OCR_PPredictor *)java_pointer;
delete ppredictor;
}
\ No newline at end of file
}
......@@ -92,6 +92,8 @@ include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
include_directories("${PADDLE_LIB}/third_party/install/onnxruntime/include")
include_directories("${PADDLE_LIB}/third_party/install/paddle2onnx/include")
include_directories("${PADDLE_LIB}/third_party/boost")
include_directories("${PADDLE_LIB}/third_party/eigen3")
......@@ -110,6 +112,8 @@ link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib")
link_directories("${PADDLE_LIB}/third_party/install/onnxruntime/lib")
link_directories("${PADDLE_LIB}/third_party/install/paddle2onnx/lib")
link_directories("${PADDLE_LIB}/paddle/lib")
......
......@@ -109,8 +109,10 @@ CUDA_LIB、CUDNN_LIB、TENSORRT_DIR、WITH_GPU、WITH_TENSORRT
运行之前,将下面文件拷贝到`build/Release/`文件夹下
1. `paddle_inference/paddle/lib/paddle_inference.dll`
2. `opencv/build/x64/vc15/bin/opencv_world455.dll`
3. 如果使用openblas版本的预测库还需要拷贝 `paddle_inference/third_party/install/openblas/lib/openblas.dll`
2. `paddle_inference/third_party/install/onnxruntime/lib/onnxruntime.dll`
3. `paddle_inference/third_party/install/paddle2onnx/lib/paddle2onnx.dll`
4. `opencv/build/x64/vc15/bin/opencv_world455.dll`
5. 如果使用openblas版本的预测库还需要拷贝 `paddle_inference/third_party/install/openblas/lib/openblas.dll`
### Step4: 预测
......
......@@ -208,7 +208,7 @@ Execute the built executable file:
./build/ppocr [--param1] [--param2] [...]
```
**Note**:ppocr uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3, 48, 320`, so if you use the recognition function, you need to add the parameter `--rec_img_h=48`, if you do not use the default `PP-OCRv3` model, you do not need to set this parameter.
**Note**:ppocr uses the `PP-OCRv3` model by default, and the input shape used by the recognition model is `3, 48, 320`, if you want to use the old version model, you should add the parameter `--rec_img_h=32`.
Specifically,
......@@ -222,7 +222,6 @@ Specifically,
--det=true \
--rec=true \
--cls=true \
--rec_img_h=48\
```
##### 2. det+rec:
......@@ -234,7 +233,6 @@ Specifically,
--det=true \
--rec=true \
--cls=false \
--rec_img_h=48\
```
##### 3. det
......@@ -254,7 +252,6 @@ Specifically,
--det=false \
--rec=true \
--cls=true \
--rec_img_h=48\
```
##### 5. rec
......@@ -265,7 +262,6 @@ Specifically,
--det=false \
--rec=true \
--cls=false \
--rec_img_h=48\
```
##### 6. cls
......@@ -330,7 +326,7 @@ More parameters are as follows,
|rec_model_dir|string|-|Address of recognition inference model|
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
|rec_batch_num|int|6|batch size of recognition|
|rec_img_h|int|32|image height of recognition|
|rec_img_h|int|48|image height of recognition|
|rec_img_w|int|320|image width of recognition|
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
......
......@@ -213,7 +213,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
本demo支持系统串联调用,也支持单个功能的调用,如,只使用检测或识别功能。
**注意** ppocr默认使用`PP-OCRv3`模型,识别模型使用的输入shape为`3,48,320`, 因此如果使用识别功能,需要添加参数`--rec_img_h=48`,如果不使用默认的`PP-OCRv3`模型,则无需设置该参数
**注意** ppocr默认使用`PP-OCRv3`模型,识别模型使用的输入shape为`3,48,320`, 如需使用旧版本的PP-OCR模型,则需要设置参数`--rec_img_h=32`
运行方式:
......@@ -232,7 +232,6 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=true \
--rec=true \
--cls=true \
--rec_img_h=48\
```
##### 2. 检测+识别:
......@@ -244,7 +243,6 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=true \
--rec=true \
--cls=false \
--rec_img_h=48\
```
##### 3. 检测:
......@@ -264,7 +262,6 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=false \
--rec=true \
--cls=true \
--rec_img_h=48\
```
##### 5. 识别:
......@@ -275,7 +272,6 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
--det=false \
--rec=true \
--cls=false \
--rec_img_h=48\
```
##### 6. 分类:
......@@ -339,7 +335,7 @@ CUDNN_LIB_DIR=/your_cudnn_lib_dir
|rec_model_dir|string|-|识别模型inference model地址|
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|字典文件|
|rec_batch_num|int|6|识别模型batchsize|
|rec_img_h|int|32|识别模型输入图像高度|
|rec_img_h|int|48|识别模型输入图像高度|
|rec_img_w|int|320|识别模型输入图像宽度|
......
......@@ -47,7 +47,7 @@ DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
DEFINE_string(rec_char_dict_path, "../../ppocr/utils/ppocr_keys_v1.txt",
"Path of dictionary.");
DEFINE_int32(rec_img_h, 32, "rec image height");
DEFINE_int32(rec_img_h, 48, "rec image height");
DEFINE_int32(rec_img_w, 320, "rec image width");
// ocr forward related
......
......@@ -132,7 +132,9 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
paddle_infer::Config config;
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
std::cout << "In PP-OCRv3, default rec_img_h is 48,"
<< "if you use other model, you should set the param rec_img_h=32"
<< std::endl;
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
......
......@@ -4,4 +4,5 @@ det_db_box_thresh 0.5
det_db_unclip_ratio 1.6
det_db_use_dilate 0
det_use_polygon_score 1
use_direction_classify 1
\ No newline at end of file
use_direction_classify 1
rec_image_height 32
\ No newline at end of file
......@@ -19,25 +19,27 @@
const std::vector<int> rec_image_shape{3, 32, 320};
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio) {
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio, int rec_image_height) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_height;
imgW = rec_image_shape[2];
imgH = rec_image_shape[1];
imgW = int(32 * wh_ratio);
imgW = int(imgH * wh_ratio);
float ratio = static_cast<float>(img.cols) / static_cast<float>(img.rows);
float ratio = float(img.cols) / float(img.rows);
int resize_w, resize_h;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = static_cast<int>(ceilf(imgH * ratio));
cv::Mat resize_img;
resize_w = int(ceilf(imgH * ratio));
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
return resize_img;
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
{127, 127, 127});
}
std::vector<std::string> ReadDict(std::string path) {
......
......@@ -26,7 +26,7 @@
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio);
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio, int rec_image_height);
std::vector<std::string> ReadDict(std::string path);
......
......@@ -162,7 +162,8 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
std::vector<std::string> charactor_dict,
std::shared_ptr<PaddlePredictor> predictor_cls,
int use_direction_classify,
std::vector<double> *times) {
std::vector<double> *times,
int rec_image_height) {
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
......@@ -183,7 +184,7 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
float wh_ratio =
static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
resize_img = CrnnResizeImg(crop_img, wh_ratio);
resize_img = CrnnResizeImg(crop_img, wh_ratio, rec_image_height);
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
......@@ -444,7 +445,7 @@ void system(char **argv){
//// load config from txt file
auto Config = LoadConfigTxt(det_config_path);
int use_direction_classify = int(Config["use_direction_classify"]);
int rec_image_height = int(Config["rec_image_height"]);
auto charactor_dict = ReadDict(dict_path);
charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
charactor_dict.push_back(" ");
......@@ -590,12 +591,16 @@ void rec(int argc, char **argv) {
std::string batchsize = argv[6];
std::string img_dir = argv[7];
std::string dict_path = argv[8];
std::string config_path = argv[9];
if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0) {
std::cerr << "Only support FP32 or INT8." << std::endl;
exit(1);
}
auto Config = LoadConfigTxt(config_path);
int rec_image_height = int(Config["rec_image_height"]);
std::vector<cv::String> cv_all_img_names;
cv::glob(img_dir, cv_all_img_names);
......@@ -630,7 +635,7 @@ void rec(int argc, char **argv) {
std::vector<float> rec_text_score;
std::vector<double> times;
RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
charactor_dict, cls_predictor, 0, &times);
charactor_dict, cls_predictor, 0, &times, rec_image_height);
//// print recognized text
for (int i = 0; i < rec_text.size(); i++) {
......
......@@ -34,7 +34,7 @@ For the compilation process of different development environments, please refer
### 1.2 Prepare Paddle-Lite library
There are two ways to obtain the Paddle-Lite library:
- 1. Download directly, the download link of the Paddle-Lite library is as follows:
- 1. [Recommended] Download directly, the download link of the Paddle-Lite library is as follows:
| Platform | Paddle-Lite library download link |
|---|---|
......@@ -43,7 +43,9 @@ There are two ways to obtain the Paddle-Lite library:
Note: 1. The above Paddle-Lite library is compiled from the Paddle-Lite 2.10 branch. For more information about Paddle-Lite 2.10, please refer to [link](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.10).
- 2. [Recommended] Compile Paddle-Lite to get the prediction library. The compilation method of Paddle-Lite is as follows:
**Note: It is recommended to use paddlelite>=2.10 version of the prediction library, other prediction library versions [download link](https://github.com/PaddlePaddle/Paddle-Lite/tags)**
- 2. Compile Paddle-Lite to get the prediction library. The compilation method of Paddle-Lite is as follows:
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
......@@ -104,21 +106,17 @@ If you directly use the model in the above table for deployment, you can skip th
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
The `opt` tool can be obtained by compiling Paddle Lite.
- Step 1: Refer to [document](https://www.paddlepaddle.org.cn/lite/v2.10/user_guides/opt/opt_python.html) to install paddlelite, which is used to convert paddle inference model to paddlelite required for running nb model
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout release/v2.10
./lite/tools/build.sh build_optimize_tool
pip install paddlelite==2.10 # The paddlelite version should be the same as the prediction library version
```
After the compilation is complete, the opt file is located under build.opt/lite/api/, You can view the operating options and usage of opt in the following ways:
After installation, the following commands can view the help information
```
cd build.opt/lite/api/
./opt
paddle_lite_opt
```
Introduction to paddle_lite_opt parameters:
|Options|Description|
|---|---|
|--model_dir|The path of the PaddlePaddle model to be optimized (non-combined form)|
......@@ -131,6 +129,8 @@ cd build.opt/lite/api/
`--model_dir` is suitable for the non-combined mode of the model to be optimized, and the inference model of PaddleOCR is the combined mode, that is, the model structure and model parameters are stored in a single file.
- Step 2: Use paddle_lite_opt to convert the inference model to the mobile model format.
The following takes the ultra-lightweight Chinese model of PaddleOCR as an example to introduce the use of the compiled opt file to complete the conversion of the inference model to the Paddle-Lite optimized model
```
......@@ -240,6 +240,7 @@ det_db_thresh 0.3 # Used to filter the binarized image of DB prediction,
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
use_direction_classify 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
rec_image_height 32 # The height of the input image of the recognition model, the PP-OCRv3 model needs to be set to 48, and the PP-OCRv2 model needs to be set to 32
```
5. Run Model on phone
......@@ -258,8 +259,15 @@ After the above steps are completed, you can use adb to push the file to the pho
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
# The use of ocr_db_crnn is:
# ./ocr_db_crnn Detection model file Orientation classifier model file Recognition model file Test image path Dictionary file path
./ocr_db_crnn ch_PP-OCRv2_det_slim_opt.nb ch_PP-OCRv2_rec_slim_opt.nb ch_ppocr_mobile_v2.0_cls_opt.nb ./11.jpg ppocr_keys_v1.txt
# ./ocr_db_crnn Mode Detection model file Orientation classifier model file Recognition model file Hardware Precision Threads Batchsize Test image path Dictionary file path
./ocr_db_crnn system ch_PP-OCRv2_det_slim_opt.nb ch_PP-OCRv2_rec_slim_opt.nb ch_ppocr_mobile_v2.0_cls_slim_opt.nb arm8 INT8 10 1 ./11.jpg config.txt ppocr_keys_v1.txt True
# precision can be INT8 for quantitative model or FP32 for normal model.
# Only using detection model
./ocr_db_crnn det ch_PP-OCRv2_det_slim_opt.nb arm8 INT8 10 1 ./11.jpg config.txt
# Only using recognition model
./ocr_db_crnn rec ch_PP-OCRv2_rec_slim_opt.nb arm8 INT8 10 1 word_1.jpg ppocr_keys_v1.txt config.txt
```
If you modify the code, you need to recompile and push to the phone.
......@@ -283,3 +291,7 @@ A2: Replace the .jpg test image under ./debug with the image you want to test, a
Q3: How to package it into the mobile APP?
A3: This demo aims to provide the core algorithm part that can run OCR on mobile phones. Further, PaddleOCR/deploy/android_demo is an example of encapsulating this demo into a mobile app for reference.
Q4: When running the demo, an error is reported `Error: This model is not supported, because kernel for 'io_copy' is not supported by Paddle-Lite.`
A4: The problem is that the installed paddlelite version does not match the downloaded prediction library version. Make sure that the paddleliteopt tool matches your prediction library version, and try to switch to the nb model again.
......@@ -8,7 +8,7 @@
- [2.1 模型优化](#21-模型优化)
- [2.2 与手机联调](#22-与手机联调)
- [FAQ](#faq)
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleOCR超轻量中文检测、识别模型的详细步骤。
......@@ -32,7 +32,7 @@ Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理
### 1.2 准备预测库
预测库有两种获取方式:
- 1. 直接下载,预测库下载链接如下:
- 1. [推荐]直接下载,预测库下载链接如下:
| 平台 | 预测库下载链接 |
|---|---|
......@@ -41,7 +41,9 @@ Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理
注:1. 上述预测库为PaddleLite 2.10分支编译得到,有关PaddleLite 2.10 详细信息可参考 [链接](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.10) 。
- 2. [推荐]编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下:
**注:建议使用paddlelite>=2.10版本的预测库,其他预测库版本[下载链接](https://github.com/PaddlePaddle/Paddle-Lite/tags)**
- 2. 编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下:
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
......@@ -102,22 +104,16 @@ Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括
如果要部署的模型不在上述表格中,则需要按照如下步骤获得优化后的模型。
模型优化需要Paddle-Lite的opt可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下:
- 步骤1:参考[文档](https://www.paddlepaddle.org.cn/lite/v2.10/user_guides/opt/opt_python.html)安装paddlelite,用于转换paddle inference model为paddlelite运行所需的nb模型
```
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout release/v2.10
# 启动编译
./lite/tools/build.sh build_optimize_tool
pip install paddlelite==2.10 # paddlelite版本要与预测库版本一致
```
编译完成后,opt文件位于`build.opt/lite/api/`下,可通过如下方式查看opt的运行选项和使用方式;
安装完后,如下指令可以查看帮助信息
```
cd build.opt/lite/api/
./opt
paddle_lite_opt
```
paddle_lite_opt 参数介绍:
|选项|说明|
|---|---|
|--model_dir|待优化的PaddlePaddle模型(非combined形式)的路径|
......@@ -130,6 +126,8 @@ cd build.opt/lite/api/
`--model_dir`适用于待优化的模型是非combined方式,PaddleOCR的inference模型是combined方式,即模型结构和模型参数使用单独一个文件存储。
- 步骤2:使用paddle_lite_opt将inference模型转换成移动端模型格式。
下面以PaddleOCR的超轻量中文模型为例,介绍使用编译好的opt文件完成inference模型到Paddle-Lite优化模型的转换。
```
......@@ -148,7 +146,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_cls
转换成功后,inference模型目录下会多出`.nb`结尾的文件,即是转换成功的模型文件。
注意:使用paddle-lite部署时,需要使用opt工具优化后的模型。 opt 工具的输入模型是paddle保存的inference模型
注意:使用paddle-lite部署时,需要使用opt工具优化后的模型。 opt工具的输入模型是paddle保存的inference模型
<a name="2.2与手机联调"></a>
### 2.2 与手机联调
......@@ -234,13 +232,14 @@ ppocr_keys_v1.txt # 中文字典
...
```
2. `config.txt` 包含了检测器、分类器的超参数,如下:
2. `config.txt` 包含了检测器、分类器、识别器的超参数,如下:
```
max_side_len 960 # 输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960
det_db_thresh 0.3 # 用于过滤DB预测的二值化图像,设置为0.-0.3对结果影响不明显
det_db_box_thresh 0.5 # DB后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小
det_db_box_thresh 0.5 # 检测器后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小
det_db_unclip_ratio 1.6 # 表示文本框的紧致程度,越小则文本框更靠近文本
use_direction_classify 0 # 是否使用方向分类器,0表示不使用,1表示使用
rec_image_height 32 # 识别模型输入图像的高度,PP-OCRv3模型设置为48,PP-OCRv2模型需要设置为32
```
5. 启动调试
......@@ -259,8 +258,14 @@ use_direction_classify 0 # 是否使用方向分类器,0表示不使用,1
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
# 开始使用,ocr_db_crnn可执行文件的使用方式为:
# ./ocr_db_crnn 检测模型文件 方向分类器模型文件 识别模型文件 测试图像路径 字典文件路径
./ocr_db_crnn ch_PP-OCRv2_det_slim_opt.nb ch_PP-OCRv2_rec_slim_opt.nb ch_ppocr_mobile_v2.0_cls_slim_opt.nb ./11.jpg ppocr_keys_v1.txt
# ./ocr_db_crnn 预测模式 检测模型文件 方向分类器模型文件 识别模型文件 运行硬件 运行精度 线程数 batchsize 测试图像路径 参数配置路径 字典文件路径 是否使用benchmark参数
./ocr_db_crnn system ch_PP-OCRv2_det_slim_opt.nb ch_PP-OCRv2_rec_slim_opt.nb ch_ppocr_mobile_v2.0_cls_slim_opt.nb arm8 INT8 10 1 ./11.jpg config.txt ppocr_keys_v1.txt True
# 仅使用文本检测模型,使用方式如下:
./ocr_db_crnn det ch_PP-OCRv2_det_slim_opt.nb arm8 INT8 10 1 ./11.jpg config.txt
# 仅使用文本识别模型,使用方式如下:
./ocr_db_crnn rec ch_PP-OCRv2_rec_slim_opt.nb arm8 INT8 10 1 word_1.jpg ppocr_keys_v1.txt config.txt
```
如果对代码做了修改,则需要重新编译并push到手机上。
......@@ -284,3 +289,7 @@ A2:替换debug下的.jpg测试图像为你想要测试的图像,adb push 到
Q3:如何封装到手机APP中?
A3:此demo旨在提供能在手机上运行OCR的核心算法部分,PaddleOCR/deploy/android_demo是将这个demo封装到手机app的示例,供参考
Q4:运行demo时遇到报错`Error: This model is not supported, because kernel for 'io_copy' is not supported by Paddle-Lite.`
A4:问题是安装的paddlelite版本和下载的预测库版本不匹配,确保paddleliteopt工具和你的预测库版本匹配,重新转nb模型试试。
......@@ -339,7 +339,7 @@ class CharacterOps(object):
class OCRReader(object):
def __init__(self,
algorithm="CRNN",
image_shape=[3, 32, 320],
image_shape=[3, 48, 320],
char_type="ch",
batch_num=1,
char_dict_path="./ppocr_keys_v1.txt"):
......@@ -356,7 +356,7 @@ class OCRReader(object):
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
if self.character_type == "ch":
imgW = int(32 * max_wh_ratio)
imgW = int(imgH * max_wh_ratio)
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
......@@ -377,7 +377,7 @@ class OCRReader(object):
def preprocess(self, img_list):
img_num = len(img_list)
norm_img_batch = []
max_wh_ratio = 0
max_wh_ratio = 320/48.
for ino in range(img_num):
h, w = img_list[ino].shape[0:2]
wh_ratio = w * 1.0 / h
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment