Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
38f27a53
Commit
38f27a53
authored
Dec 07, 2020
by
WenmuZhou
Browse files
merge upstream
parents
cb7afb85
99ee41d8
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
63 additions
and
80 deletions
+63
-80
ppocr/data/simple_dataset.py
ppocr/data/simple_dataset.py
+17
-49
tools/infer/predict_cls.py
tools/infer/predict_cls.py
+10
-10
tools/infer/predict_det.py
tools/infer/predict_det.py
+3
-2
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+5
-5
tools/infer/predict_system.py
tools/infer/predict_system.py
+28
-14
No files found.
ppocr/data/simple_dataset.py
View file @
38f27a53
...
@@ -32,12 +32,10 @@ class SimpleDataSet(Dataset):
...
@@ -32,12 +32,10 @@ class SimpleDataSet(Dataset):
self
.
delimiter
=
dataset_config
.
get
(
'delimiter'
,
'
\t
'
)
self
.
delimiter
=
dataset_config
.
get
(
'delimiter'
,
'
\t
'
)
label_file_list
=
dataset_config
.
pop
(
'label_file_list'
)
label_file_list
=
dataset_config
.
pop
(
'label_file_list'
)
data_source_num
=
len
(
label_file_list
)
data_source_num
=
len
(
label_file_list
)
if
data_source_num
==
1
:
ratio_list
=
dataset_config
.
get
(
"ratio_list"
,
[
1.0
])
ratio_list
=
[
1.0
]
if
isinstance
(
ratio_list
,
(
float
,
int
)):
else
:
ratio_list
=
[
float
(
ratio_list
)]
*
len
(
data_source_num
)
ratio_list
=
dataset_config
.
pop
(
'ratio_list'
)
assert
sum
(
ratio_list
)
==
1
,
"The sum of the ratio_list should be 1."
assert
len
(
assert
len
(
ratio_list
ratio_list
)
==
data_source_num
,
"The length of ratio_list should be the same as the file_list."
)
==
data_source_num
,
"The length of ratio_list should be the same as the file_list."
...
@@ -45,62 +43,32 @@ class SimpleDataSet(Dataset):
...
@@ -45,62 +43,32 @@ class SimpleDataSet(Dataset):
self
.
do_shuffle
=
loader_config
[
'shuffle'
]
self
.
do_shuffle
=
loader_config
[
'shuffle'
]
logger
.
info
(
"Initialize indexs of datasets:%s"
%
label_file_list
)
logger
.
info
(
"Initialize indexs of datasets:%s"
%
label_file_list
)
self
.
data_lines_list
,
data_num_list
=
self
.
get_image_info_list
(
self
.
data_lines
=
self
.
get_image_info_list
(
label_file_list
,
ratio_list
)
label_file_list
)
self
.
data_idx_order_list
=
list
(
range
(
len
(
self
.
data_lines
)))
self
.
data_idx_order_list
=
self
.
dataset_traversal
(
if
mode
.
lower
()
==
"train"
:
data_num_list
,
ratio_list
,
batch_size
)
self
.
shuffle_data_random
()
self
.
shuffle_data_random
()
self
.
ops
=
create_operators
(
dataset_config
[
'transforms'
],
global_config
)
self
.
ops
=
create_operators
(
dataset_config
[
'transforms'
],
global_config
)
def
get_image_info_list
(
self
,
file_list
):
def
get_image_info_list
(
self
,
file_list
,
ratio_list
):
if
isinstance
(
file_list
,
str
):
if
isinstance
(
file_list
,
str
):
file_list
=
[
file_list
]
file_list
=
[
file_list
]
data_lines_list
=
[]
data_lines
=
[]
data_num_list
=
[]
for
idx
,
file
in
enumerate
(
file_list
):
for
file
in
file_list
:
with
open
(
file
,
"rb"
)
as
f
:
with
open
(
file
,
"rb"
)
as
f
:
lines
=
f
.
readlines
()
lines
=
f
.
readlines
()
data_lines_list
.
append
(
lines
)
lines
=
random
.
sample
(
lines
,
data_num_list
.
append
(
len
(
lines
))
round
(
len
(
lines
)
*
ratio_list
[
idx
]))
return
data_lines_list
,
data_num_list
data_lines
.
extend
(
lines
)
return
data_lines
def
dataset_traversal
(
self
,
data_num_list
,
ratio_list
,
batch_size
):
select_num_list
=
[]
dataset_num
=
len
(
data_num_list
)
for
dno
in
range
(
dataset_num
):
select_num
=
round
(
batch_size
*
ratio_list
[
dno
])
select_num
=
max
(
select_num
,
1
)
select_num_list
.
append
(
select_num
)
data_idx_order_list
=
[]
cur_index_sets
=
[
0
]
*
dataset_num
while
True
:
finish_read_num
=
0
for
dataset_idx
in
range
(
dataset_num
):
cur_index
=
cur_index_sets
[
dataset_idx
]
if
cur_index
>=
data_num_list
[
dataset_idx
]:
finish_read_num
+=
1
else
:
select_num
=
select_num_list
[
dataset_idx
]
for
sno
in
range
(
select_num
):
cur_index
=
cur_index_sets
[
dataset_idx
]
if
cur_index
>=
data_num_list
[
dataset_idx
]:
break
data_idx_order_list
.
append
((
dataset_idx
,
cur_index
))
cur_index_sets
[
dataset_idx
]
+=
1
if
finish_read_num
==
dataset_num
:
break
return
data_idx_order_list
def
shuffle_data_random
(
self
):
def
shuffle_data_random
(
self
):
if
self
.
do_shuffle
:
if
self
.
do_shuffle
:
for
dno
in
range
(
len
(
self
.
data_lines_list
)):
random
.
shuffle
(
self
.
data_lines
)
random
.
shuffle
(
self
.
data_lines_list
[
dno
])
return
return
def
__getitem__
(
self
,
idx
):
def
__getitem__
(
self
,
idx
):
dataset_idx
,
file_idx
=
self
.
data_idx_order_list
[
idx
]
file_idx
=
self
.
data_idx_order_list
[
idx
]
data_line
=
self
.
data_lines
_list
[
dataset_idx
]
[
file_idx
]
data_line
=
self
.
data_lines
[
file_idx
]
try
:
try
:
data_line
=
data_line
.
decode
(
'utf-8'
)
data_line
=
data_line
.
decode
(
'utf-8'
)
substr
=
data_line
.
strip
(
"
\n
"
).
split
(
self
.
delimiter
)
substr
=
data_line
.
strip
(
"
\n
"
).
split
(
self
.
delimiter
)
...
...
tools/infer/predict_cls.py
View file @
38f27a53
...
@@ -23,7 +23,7 @@ import copy
...
@@ -23,7 +23,7 @@ import copy
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
time
import
time
import
traceback
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
...
@@ -106,10 +106,10 @@ class TextClassifier(object):
...
@@ -106,10 +106,10 @@ class TextClassifier(object):
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
self
.
predictor
.
run
([
norm_img_batch
])
self
.
predictor
.
run
([
norm_img_batch
])
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
cls_res
=
self
.
postprocess_op
(
prob_out
)
cls_res
ult
=
self
.
postprocess_op
(
prob_out
)
elapse
+=
time
.
time
()
-
starttime
elapse
+=
time
.
time
()
-
starttime
for
rno
in
range
(
len
(
cls_res
)):
for
rno
in
range
(
len
(
cls_res
ult
)):
label
,
score
=
cls_res
[
rno
]
label
,
score
=
cls_res
ult
[
rno
]
cls_res
[
indices
[
beg_img_no
+
rno
]]
=
[
label
,
score
]
cls_res
[
indices
[
beg_img_no
+
rno
]]
=
[
label
,
score
]
if
'180'
in
label
and
score
>
self
.
cls_thresh
:
if
'180'
in
label
and
score
>
self
.
cls_thresh
:
img_list
[
indices
[
beg_img_no
+
rno
]]
=
cv2
.
rotate
(
img_list
[
indices
[
beg_img_no
+
rno
]]
=
cv2
.
rotate
(
...
@@ -133,8 +133,8 @@ def main(args):
...
@@ -133,8 +133,8 @@ def main(args):
img_list
.
append
(
img
)
img_list
.
append
(
img
)
try
:
try
:
img_list
,
cls_res
,
predict_time
=
text_classifier
(
img_list
)
img_list
,
cls_res
,
predict_time
=
text_classifier
(
img_list
)
except
Exception
as
e
:
except
:
print
(
e
)
logger
.
info
(
traceback
.
format_exc
()
)
logger
.
info
(
logger
.
info
(
"ERROR!!!!
\n
"
"ERROR!!!!
\n
"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq
\n
"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq
\n
"
...
@@ -143,10 +143,10 @@ def main(args):
...
@@ -143,10 +143,10 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
exit
()
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
print
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
cls_res
[
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
cls_res
[
ino
]))
ino
]))
print
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
len
(
img_list
),
predict_time
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
(
utility
.
parse_args
())
main
(
utility
.
parse_args
())
tools/infer/predict_det.py
View file @
38f27a53
...
@@ -178,11 +178,12 @@ if __name__ == "__main__":
...
@@ -178,11 +178,12 @@ if __name__ == "__main__":
if
count
>
0
:
if
count
>
0
:
total_time
+=
elapse
total_time
+=
elapse
count
+=
1
count
+=
1
print
(
"Predict time of {}: {}"
.
format
(
image_file
,
elapse
))
logger
.
info
(
"Predict time of {}: {}"
.
format
(
image_file
,
elapse
))
src_im
=
utility
.
draw_text_det_res
(
dt_boxes
,
image_file
)
src_im
=
utility
.
draw_text_det_res
(
dt_boxes
,
image_file
)
img_name_pure
=
os
.
path
.
split
(
image_file
)[
-
1
]
img_name_pure
=
os
.
path
.
split
(
image_file
)[
-
1
]
img_path
=
os
.
path
.
join
(
draw_img_save
,
img_path
=
os
.
path
.
join
(
draw_img_save
,
"det_res_{}"
.
format
(
img_name_pure
))
"det_res_{}"
.
format
(
img_name_pure
))
cv2
.
imwrite
(
img_path
,
src_im
)
cv2
.
imwrite
(
img_path
,
src_im
)
logger
.
info
(
"The visualized image saved in {}"
.
format
(
img_path
))
if
count
>
1
:
if
count
>
1
:
print
(
"Avg Time:"
,
total_time
/
(
count
-
1
))
logger
.
info
(
"Avg Time:"
,
total_time
/
(
count
-
1
))
tools/infer/predict_rec.py
View file @
38f27a53
...
@@ -22,7 +22,7 @@ import cv2
...
@@ -22,7 +22,7 @@ import cv2
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
time
import
time
import
traceback
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
...
@@ -135,8 +135,8 @@ def main(args):
...
@@ -135,8 +135,8 @@ def main(args):
img_list
.
append
(
img
)
img_list
.
append
(
img
)
try
:
try
:
rec_res
,
predict_time
=
text_recognizer
(
img_list
)
rec_res
,
predict_time
=
text_recognizer
(
img_list
)
except
Exception
as
e
:
except
:
print
(
e
)
logger
.
info
(
traceback
.
format_exc
()
)
logger
.
info
(
logger
.
info
(
"ERROR!!!!
\n
"
"ERROR!!!!
\n
"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq
\n
"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq
\n
"
...
@@ -145,9 +145,9 @@ def main(args):
...
@@ -145,9 +145,9 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
)
exit
()
exit
()
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
print
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
rec_res
[
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
rec_res
[
ino
]))
ino
]))
print
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
logger
.
info
(
"Total predict time for {} images, cost: {:.3f}"
.
format
(
len
(
img_list
),
predict_time
))
len
(
img_list
),
predict_time
))
...
...
tools/infer/predict_system.py
View file @
38f27a53
...
@@ -23,17 +23,21 @@ import numpy as np
...
@@ -23,17 +23,21 @@ import numpy as np
import
time
import
time
from
PIL
import
Image
from
PIL
import
Image
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
from
tools.infer.utility
import
draw_ocr
import
tools.infer.predict_rec
as
predict_rec
import
tools.infer.predict_rec
as
predict_rec
import
tools.infer.predict_det
as
predict_det
import
tools.infer.predict_det
as
predict_det
import
tools.infer.predict_cls
as
predict_cls
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.logging
import
get_logger
from
tools.infer.utility
import
draw_ocr_box_txt
class
TextSystem
(
object
):
class
TextSystem
(
object
):
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
):
self
.
text_detector
=
predict_det
.
TextDetector
(
args
)
self
.
text_detector
=
predict_det
.
TextDetector
(
args
)
self
.
text_recognizer
=
predict_rec
.
TextRecognizer
(
args
)
self
.
text_recognizer
=
predict_rec
.
TextRecognizer
(
args
)
self
.
use_angle_cls
=
args
.
use_angle_cls
if
self
.
use_angle_cls
:
self
.
text_classifier
=
predict_cls
.
TextClassifier
(
args
)
def
get_rotate_crop_image
(
self
,
img
,
points
):
def
get_rotate_crop_image
(
self
,
img
,
points
):
'''
'''
...
@@ -72,12 +76,13 @@ class TextSystem(object):
...
@@ -72,12 +76,13 @@ class TextSystem(object):
bbox_num
=
len
(
img_crop_list
)
bbox_num
=
len
(
img_crop_list
)
for
bno
in
range
(
bbox_num
):
for
bno
in
range
(
bbox_num
):
cv2
.
imwrite
(
"./output/img_crop_%d.jpg"
%
bno
,
img_crop_list
[
bno
])
cv2
.
imwrite
(
"./output/img_crop_%d.jpg"
%
bno
,
img_crop_list
[
bno
])
print
(
bno
,
rec_res
[
bno
])
logger
.
info
(
bno
,
rec_res
[
bno
])
def
__call__
(
self
,
img
):
def
__call__
(
self
,
img
):
ori_im
=
img
.
copy
()
ori_im
=
img
.
copy
()
dt_boxes
,
elapse
=
self
.
text_detector
(
img
)
dt_boxes
,
elapse
=
self
.
text_detector
(
img
)
print
(
"dt_boxes num : {}, elapse : {}"
.
format
(
len
(
dt_boxes
),
elapse
))
logger
.
info
(
"dt_boxes num : {}, elapse : {}"
.
format
(
len
(
dt_boxes
),
elapse
))
if
dt_boxes
is
None
:
if
dt_boxes
is
None
:
return
None
,
None
return
None
,
None
img_crop_list
=
[]
img_crop_list
=
[]
...
@@ -88,8 +93,15 @@ class TextSystem(object):
...
@@ -88,8 +93,15 @@ class TextSystem(object):
tmp_box
=
copy
.
deepcopy
(
dt_boxes
[
bno
])
tmp_box
=
copy
.
deepcopy
(
dt_boxes
[
bno
])
img_crop
=
self
.
get_rotate_crop_image
(
ori_im
,
tmp_box
)
img_crop
=
self
.
get_rotate_crop_image
(
ori_im
,
tmp_box
)
img_crop_list
.
append
(
img_crop
)
img_crop_list
.
append
(
img_crop
)
if
self
.
use_angle_cls
:
img_crop_list
,
angle_list
,
elapse
=
self
.
text_classifier
(
img_crop_list
)
logger
.
info
(
"cls num : {}, elapse : {}"
.
format
(
len
(
img_crop_list
),
elapse
))
rec_res
,
elapse
=
self
.
text_recognizer
(
img_crop_list
)
rec_res
,
elapse
=
self
.
text_recognizer
(
img_crop_list
)
print
(
"rec_res num : {}, elapse : {}"
.
format
(
len
(
rec_res
),
elapse
))
logger
.
info
(
"rec_res num : {}, elapse : {}"
.
format
(
len
(
rec_res
),
elapse
))
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
return
dt_boxes
,
rec_res
return
dt_boxes
,
rec_res
...
@@ -119,7 +131,8 @@ def main(args):
...
@@ -119,7 +131,8 @@ def main(args):
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
image_file_list
=
get_image_file_list
(
args
.
image_dir
)
text_sys
=
TextSystem
(
args
)
text_sys
=
TextSystem
(
args
)
is_visualize
=
True
is_visualize
=
True
tackle_img_num
=
0
font_path
=
args
.
vis_font_path
drop_score
=
args
.
drop_score
for
image_file
in
image_file_list
:
for
image_file
in
image_file_list
:
img
,
flag
=
check_and_read_gif
(
image_file
)
img
,
flag
=
check_and_read_gif
(
image_file
)
if
not
flag
:
if
not
flag
:
...
@@ -128,20 +141,16 @@ def main(args):
...
@@ -128,20 +141,16 @@ def main(args):
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
logger
.
info
(
"error in loading image:{}"
.
format
(
image_file
))
continue
continue
starttime
=
time
.
time
()
starttime
=
time
.
time
()
tackle_img_num
+=
1
if
not
args
.
use_gpu
and
args
.
enable_mkldnn
and
tackle_img_num
%
30
==
0
:
text_sys
=
TextSystem
(
args
)
dt_boxes
,
rec_res
=
text_sys
(
img
)
dt_boxes
,
rec_res
=
text_sys
(
img
)
elapse
=
time
.
time
()
-
starttime
elapse
=
time
.
time
()
-
starttime
print
(
"Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
logger
.
info
(
"Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
drop_score
=
0.5
dt_num
=
len
(
dt_boxes
)
dt_num
=
len
(
dt_boxes
)
for
dno
in
range
(
dt_num
):
for
dno
in
range
(
dt_num
):
text
,
score
=
rec_res
[
dno
]
text
,
score
=
rec_res
[
dno
]
if
score
>=
drop_score
:
if
score
>=
drop_score
:
text_str
=
"%s, %.3f"
%
(
text
,
score
)
text_str
=
"%s, %.3f"
%
(
text
,
score
)
print
(
text_str
)
logger
.
info
(
text_str
)
if
is_visualize
:
if
is_visualize
:
image
=
Image
.
fromarray
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
))
image
=
Image
.
fromarray
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
))
...
@@ -149,15 +158,20 @@ def main(args):
...
@@ -149,15 +158,20 @@ def main(args):
txts
=
[
rec_res
[
i
][
0
]
for
i
in
range
(
len
(
rec_res
))]
txts
=
[
rec_res
[
i
][
0
]
for
i
in
range
(
len
(
rec_res
))]
scores
=
[
rec_res
[
i
][
1
]
for
i
in
range
(
len
(
rec_res
))]
scores
=
[
rec_res
[
i
][
1
]
for
i
in
range
(
len
(
rec_res
))]
draw_img
=
draw_ocr
(
draw_img
=
draw_ocr_box_txt
(
image
,
boxes
,
txts
,
scores
,
drop_score
=
drop_score
)
image
,
boxes
,
txts
,
scores
,
drop_score
=
drop_score
,
font_path
=
font_path
)
draw_img_save
=
"./inference_results/"
draw_img_save
=
"./inference_results/"
if
not
os
.
path
.
exists
(
draw_img_save
):
if
not
os
.
path
.
exists
(
draw_img_save
):
os
.
makedirs
(
draw_img_save
)
os
.
makedirs
(
draw_img_save
)
cv2
.
imwrite
(
cv2
.
imwrite
(
os
.
path
.
join
(
draw_img_save
,
os
.
path
.
basename
(
image_file
)),
os
.
path
.
join
(
draw_img_save
,
os
.
path
.
basename
(
image_file
)),
draw_img
[:,
:,
::
-
1
])
draw_img
[:,
:,
::
-
1
])
print
(
"The visualized image saved in {}"
.
format
(
logger
.
info
(
"The visualized image saved in {}"
.
format
(
os
.
path
.
join
(
draw_img_save
,
os
.
path
.
basename
(
image_file
))))
os
.
path
.
join
(
draw_img_save
,
os
.
path
.
basename
(
image_file
))))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment