Commit 2814d997 authored by zhangxin's avatar zhangxin
Browse files

Merge remote-tracking branch 'upstream/develop' into zxdev

parents 9717944c dcd0ed64
......@@ -93,6 +93,9 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_mode
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
- [基于预测引擎推理](./doc/doc_ch/inference.md)
- [数据集](./doc/doc_ch/datasets.md)
- [FAQ](#FAQ)
- [联系我们](#欢迎加入PaddleOCR技术交流群)
- [参考文献](#参考文献)
## 文本检测算法
......@@ -170,6 +173,7 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)
<a name="FAQ"></a>
## FAQ
1. **转换attention识别模型时报错:KeyError: 'predict'**
问题已解,请更新到最新代码。
......@@ -185,9 +189,12 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识
[more](./doc/doc_ch/FAQ.md)
<a name="欢迎加入PaddleOCR技术交流群"></a>
## 欢迎加入PaddleOCR技术交流群
加微信:paddlehelp,备注OCR,小助手拉你进群~
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~
<img src="./doc/paddlehelp.jpg" width = "200" height = "200" />
<a name="参考文献"></a>
## 参考文献
```
1. EAST:
......
......@@ -125,8 +125,8 @@ class DBProcessTest(object):
def __init__(self, params):
super(DBProcessTest, self).__init__()
self.resize_type = 0
if 'det_image_shape' in params:
self.image_shape = params['det_image_shape']
if 'test_image_shape' in params:
self.image_shape = params['test_image_shape']
# print(self.image_shape)
self.resize_type = 1
if 'max_side_len' in params:
......
......@@ -455,17 +455,23 @@ class EASTProcessTrain(object):
class EASTProcessTest(object):
def __init__(self, params):
super(EASTProcessTest, self).__init__()
self.resize_type = 0
if 'test_image_shape' in params:
self.image_shape = params['test_image_shape']
# print(self.image_shape)
self.resize_type = 1
if 'max_side_len' in params:
self.max_side_len = params['max_side_len']
else:
self.max_side_len = 2400
def resize_image(self, im):
def resize_image_type0(self, im):
"""
resize image to a size multiple of 32 which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
args:
img(array): array with shape [h, w, c]
return(tuple):
img, (ratio_h, ratio_w)
"""
max_side_len = self.max_side_len
h, w, _ = im.shape
......@@ -495,13 +501,30 @@ class EASTProcessTest(object):
resize_w = 32
else:
resize_w = (resize_w // 32 - 1) * 32
try:
if int(resize_w) <= 0 or int(resize_h) <= 0:
return None, (None, None)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
except:
print(im.shape, resize_w, resize_h)
sys.exit(0)
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def resize_image_type1(self, im):
resize_h, resize_w = self.image_shape
ori_h, ori_w = im.shape[:2] # (h, w, c)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = float(resize_h) / ori_h
ratio_w = float(resize_w) / ori_w
return im, (ratio_h, ratio_w)
def __call__(self, im):
im, (ratio_h, ratio_w) = self.resize_image(im)
if self.resize_type == 0:
im, (ratio_h, ratio_w) = self.resize_image_type0(im)
else:
im, (ratio_h, ratio_w) = self.resize_image_type1(im)
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im[:, :, ::-1].astype(np.float32)
......
......@@ -108,8 +108,8 @@ def process_image(img,
if len(text) == 0 or len(text) > max_text_length:
logger.info(
"Warning in ppocr/data/rec/img_tools.py:line106: Wrong data type."
"Excepted string with length between 0 and {}, but "
"got '{}' ".format(max_text_length, label))
"Excepted string with length between 1 and {}, but "
"got '{}'. Label is '{}'".format(max_text_length, len(text),label))
return None
else:
if loss_type == "ctc":
......
......@@ -18,6 +18,7 @@ from __future__ import print_function
import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict
class EASTHead(object):
......@@ -110,7 +111,7 @@ class EASTHead(object):
def __call__(self, inputs):
f_common = self.unet_fusion(inputs)
f_score, f_geo = self.detector_header(f_common)
predicts = {}
predicts = OrderedDict()
predicts['f_score'] = f_score
predicts['f_geo'] = f_geo
return predicts
......@@ -20,6 +20,12 @@ import numpy as np
from .locality_aware_nms import nms_locality
import cv2
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
class EASTPostPocess(object):
"""
......@@ -31,6 +37,11 @@ class EASTPostPocess(object):
self.cover_thresh = params['cover_thresh']
self.nms_thresh = params['nms_thresh']
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def restore_rectangle_quad(self, origin, geometry):
"""
Restore rectangle from quadrangle.
......@@ -66,6 +77,10 @@ class EASTPostPocess(object):
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
if self.is_python35:
import lanms
boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
else:
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
if boxes.shape[0] == 0:
return []
......
#!/usr/bin/env python
#
# Copyright (C) 2014 Google Inc.
#
# This file is part of YouCompleteMe.
#
# YouCompleteMe is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# YouCompleteMe is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with YouCompleteMe. If not, see <http://www.gnu.org/licenses/>.
import os
import sys
import glob
import ycm_core
# These are the compilation flags that will be used in case there's no
# compilation database set (by default, one is not set).
# CHANGE THIS LIST OF FLAGS. YES, THIS IS THE DROID YOU HAVE BEEN LOOKING FOR.
sys.path.append(os.path.dirname(__file__))
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
from plumbum.cmd import python_config
flags = [
'-Wall',
'-Wextra',
'-Wnon-virtual-dtor',
'-Winvalid-pch',
'-Wno-unused-local-typedefs',
'-std=c++11',
'-x', 'c++',
'-Iinclude',
] + python_config('--cflags').split()
# Set this to the absolute path to the folder (NOT the file!) containing the
# compile_commands.json file to use that instead of 'flags'. See here for
# more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html
#
# Most projects will NOT need to set this to anything; you can just change the
# 'flags' list of compilation flags.
compilation_database_folder = ''
if os.path.exists( compilation_database_folder ):
database = ycm_core.CompilationDatabase( compilation_database_folder )
else:
database = None
SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ]
def DirectoryOfThisScript():
return os.path.dirname( os.path.abspath( __file__ ) )
def MakeRelativePathsInFlagsAbsolute( flags, working_directory ):
if not working_directory:
return list( flags )
new_flags = []
make_next_absolute = False
path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ]
for flag in flags:
new_flag = flag
if make_next_absolute:
make_next_absolute = False
if not flag.startswith( '/' ):
new_flag = os.path.join( working_directory, flag )
for path_flag in path_flags:
if flag == path_flag:
make_next_absolute = True
break
if flag.startswith( path_flag ):
path = flag[ len( path_flag ): ]
new_flag = path_flag + os.path.join( working_directory, path )
break
if new_flag:
new_flags.append( new_flag )
return new_flags
def IsHeaderFile( filename ):
extension = os.path.splitext( filename )[ 1 ]
return extension in [ '.h', '.hxx', '.hpp', '.hh' ]
def GetCompilationInfoForFile( filename ):
# The compilation_commands.json file generated by CMake does not have entries
# for header files. So we do our best by asking the db for flags for a
# corresponding source file, if any. If one exists, the flags for that file
# should be good enough.
if IsHeaderFile( filename ):
basename = os.path.splitext( filename )[ 0 ]
for extension in SOURCE_EXTENSIONS:
replacement_file = basename + extension
if os.path.exists( replacement_file ):
compilation_info = database.GetCompilationInfoForFile(
replacement_file )
if compilation_info.compiler_flags_:
return compilation_info
return None
return database.GetCompilationInfoForFile( filename )
# This is the entry point; this function is called by ycmd to produce flags for
# a file.
def FlagsForFile( filename, **kwargs ):
if database:
# Bear in mind that compilation_info.compiler_flags_ does NOT return a
# python list, but a "list-like" StringVec object
compilation_info = GetCompilationInfoForFile( filename )
if not compilation_info:
return None
final_flags = MakeRelativePathsInFlagsAbsolute(
compilation_info.compiler_flags_,
compilation_info.compiler_working_dir_ )
else:
relative_to = DirectoryOfThisScript()
final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to )
return {
'flags': final_flags,
'do_cache': True
}
CXXFLAGS = -I include -std=c++11 -O3 $(shell python3-config --cflags)
LDFLAGS = $(shell python3-config --ldflags)
DEPS = lanms.h $(shell find include -xtype f)
CXX_SOURCES = adaptor.cpp include/clipper/clipper.cpp
LIB_SO = adaptor.so
$(LIB_SO): $(CXX_SOURCES) $(DEPS)
$(CXX) -o $@ $(CXXFLAGS) $(LDFLAGS) $(CXX_SOURCES) --shared -fPIC
clean:
rm -rf $(LIB_SO)
import subprocess
import os
import numpy as np
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
if subprocess.call(['make', '-C', BASE_DIR]) != 0: # return value
raise RuntimeError('Cannot compile lanms: {}'.format(BASE_DIR))
def merge_quadrangle_n9(polys, thres=0.3, precision=10000):
from .adaptor import merge_quadrangle_n9 as nms_impl
if len(polys) == 0:
return np.array([], dtype='float32')
p = polys.copy()
p[:,:8] *= precision
ret = np.array(nms_impl(p, thres), dtype='float32')
ret[:,:8] /= precision
return ret
import numpy as np
from . import merge_quadrangle_n9
if __name__ == '__main__':
# unit square with confidence 1
q = np.array([0, 0, 0, 1, 1, 1, 1, 0, 1], dtype='float32')
print(merge_quadrangle_n9(np.array([q, q + 0.1, q + 2])))
#include "pybind11/pybind11.h"
#include "pybind11/numpy.h"
#include "pybind11/stl.h"
#include "pybind11/stl_bind.h"
#include "lanms.h"
namespace py = pybind11;
namespace lanms_adaptor {
std::vector<std::vector<float>> polys2floats(const std::vector<lanms::Polygon> &polys) {
std::vector<std::vector<float>> ret;
for (size_t i = 0; i < polys.size(); i ++) {
auto &p = polys[i];
auto &poly = p.poly;
ret.emplace_back(std::vector<float>{
float(poly[0].X), float(poly[0].Y),
float(poly[1].X), float(poly[1].Y),
float(poly[2].X), float(poly[2].Y),
float(poly[3].X), float(poly[3].Y),
float(p.score),
});
}
return ret;
}
/**
*
* \param quad_n9 an n-by-9 numpy array, where first 8 numbers denote the
* quadrangle, and the last one is the score
* \param iou_threshold two quadrangles with iou score above this threshold
* will be merged
*
* \return an n-by-9 numpy array, the merged quadrangles
*/
std::vector<std::vector<float>> merge_quadrangle_n9(
py::array_t<float, py::array::c_style | py::array::forcecast> quad_n9,
float iou_threshold) {
auto pbuf = quad_n9.request();
if (pbuf.ndim != 2 || pbuf.shape[1] != 9)
throw std::runtime_error("quadrangles must have a shape of (n, 9)");
auto n = pbuf.shape[0];
auto ptr = static_cast<float *>(pbuf.ptr);
return polys2floats(lanms::merge_quadrangle_n9(ptr, n, iou_threshold));
}
}
PYBIND11_PLUGIN(adaptor) {
py::module m("adaptor", "NMS");
m.def("merge_quadrangle_n9", &lanms_adaptor::merge_quadrangle_n9,
"merge quadrangels");
return m.ptr();
}
This diff is collapsed.
/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.0 *
* Date : 2 July 2015 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2015 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#define CLIPPER_VERSION "6.2.6"
//use_int32: When enabled 32bit ints are used instead of 64bit ints. This
//improve performance but coordinate values are limited to the range +/- 46340
//#define use_int32
//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
//#define use_xyz
//use_lines: Enables line clipping. Adds a very minor cost to performance.
#define use_lines
//use_deprecated: Enables temporary support for the obsolete functions
//#define use_deprecated
#include <vector>
#include <list>
#include <set>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
#include <functional>
#include <queue>
namespace ClipperLib {
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
enum PolyType { ptSubject, ptClip };
//By far the most widely used winding rules for polygon filling are
//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
//see http://glprogramming.com/red/chapter11.html
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
#ifdef use_int32
typedef int cInt;
static cInt const loRange = 0x7FFF;
static cInt const hiRange = 0x7FFF;
#else
typedef signed long long cInt;
static cInt const loRange = 0x3FFFFFFF;
static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
typedef signed long long long64; //used by Int128 class
typedef unsigned long long ulong64;
#endif
struct IntPoint {
cInt X;
cInt Y;
#ifdef use_xyz
cInt Z;
IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {};
#else
IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {};
#endif
friend inline bool operator== (const IntPoint& a, const IntPoint& b)
{
return a.X == b.X && a.Y == b.Y;
}
friend inline bool operator!= (const IntPoint& a, const IntPoint& b)
{
return a.X != b.X || a.Y != b.Y;
}
};
//------------------------------------------------------------------------------
typedef std::vector< IntPoint > Path;
typedef std::vector< Path > Paths;
inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;}
inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;}
std::ostream& operator <<(std::ostream &s, const IntPoint &p);
std::ostream& operator <<(std::ostream &s, const Path &p);
std::ostream& operator <<(std::ostream &s, const Paths &p);
struct DoublePoint
{
double X;
double Y;
DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
};
//------------------------------------------------------------------------------
#ifdef use_xyz
typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt);
#endif
enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4};
enum JoinType {jtSquare, jtRound, jtMiter};
enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound};
class PolyNode;
typedef std::vector< PolyNode* > PolyNodes;
class PolyNode
{
public:
PolyNode();
virtual ~PolyNode(){};
Path Contour;
PolyNodes Childs;
PolyNode* Parent;
PolyNode* GetNext() const;
bool IsHole() const;
bool IsOpen() const;
int ChildCount() const;
private:
unsigned Index; //node index in Parent.Childs
bool m_IsOpen;
JoinType m_jointype;
EndType m_endtype;
PolyNode* GetNextSiblingUp() const;
void AddChild(PolyNode& child);
friend class Clipper; //to access Index
friend class ClipperOffset;
};
class PolyTree: public PolyNode
{
public:
~PolyTree(){Clear();};
PolyNode* GetFirst() const;
void Clear();
int Total() const;
private:
PolyNodes AllNodes;
friend class Clipper; //to access AllNodes
};
bool Orientation(const Path &poly);
double Area(const Path &poly);
int PointInPolygon(const IntPoint &pt, const Path &path);
void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415);
void CleanPolygon(Path& poly, double distance = 1.415);
void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415);
void CleanPolygons(Paths& polys, double distance = 1.415);
void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed);
void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed);
void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution);
void PolyTreeToPaths(const PolyTree& polytree, Paths& paths);
void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths);
void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths);
void ReversePath(Path& p);
void ReversePaths(Paths& p);
struct IntRect { cInt left; cInt top; cInt right; cInt bottom; };
//enums that are used internally ...
enum EdgeSide { esLeft = 1, esRight = 2};
//forward declarations (for stuff used internally) ...
struct TEdge;
struct IntersectNode;
struct LocalMinimum;
struct OutPt;
struct OutRec;
struct Join;
typedef std::vector < OutRec* > PolyOutList;
typedef std::vector < TEdge* > EdgeList;
typedef std::vector < Join* > JoinList;
typedef std::vector < IntersectNode* > IntersectList;
//------------------------------------------------------------------------------
//ClipperBase is the ancestor to the Clipper class. It should not be
//instantiated directly. This class simply abstracts the conversion of sets of
//polygon coordinates into edge objects that are stored in a LocalMinima list.
class ClipperBase
{
public:
ClipperBase();
virtual ~ClipperBase();
virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
virtual void Clear();
IntRect GetBounds();
bool PreserveCollinear() {return m_PreserveCollinear;};
void PreserveCollinear(bool value) {m_PreserveCollinear = value;};
protected:
void DisposeLocalMinimaList();
TEdge* AddBoundsToLML(TEdge *e, bool IsClosed);
virtual void Reset();
TEdge* ProcessBound(TEdge* E, bool IsClockwise);
void InsertScanbeam(const cInt Y);
bool PopScanbeam(cInt &Y);
bool LocalMinimaPending();
bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin);
OutRec* CreateOutRec();
void DisposeAllOutRecs();
void DisposeOutRec(PolyOutList::size_type index);
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
void DeleteFromAEL(TEdge *e);
void UpdateEdgeIntoAEL(TEdge *&e);
typedef std::vector<LocalMinimum> MinimaList;
MinimaList::iterator m_CurrentLM;
MinimaList m_MinimaList;
bool m_UseFullRange;
EdgeList m_edges;
bool m_PreserveCollinear;
bool m_HasOpenPaths;
PolyOutList m_PolyOuts;
TEdge *m_ActiveEdges;
typedef std::priority_queue<cInt> ScanbeamList;
ScanbeamList m_Scanbeam;
};
//------------------------------------------------------------------------------
class Clipper : public virtual ClipperBase
{
public:
Clipper(int initOptions = 0);
bool Execute(ClipType clipType,
Paths &solution,
PolyFillType fillType = pftEvenOdd);
bool Execute(ClipType clipType,
Paths &solution,
PolyFillType subjFillType,
PolyFillType clipFillType);
bool Execute(ClipType clipType,
PolyTree &polytree,
PolyFillType fillType = pftEvenOdd);
bool Execute(ClipType clipType,
PolyTree &polytree,
PolyFillType subjFillType,
PolyFillType clipFillType);
bool ReverseSolution() { return m_ReverseOutput; };
void ReverseSolution(bool value) {m_ReverseOutput = value;};
bool StrictlySimple() {return m_StrictSimple;};
void StrictlySimple(bool value) {m_StrictSimple = value;};
//set the callback function for z value filling on intersections (otherwise Z is 0)
#ifdef use_xyz
void ZFillFunction(ZFillCallback zFillFunc);
#endif
protected:
virtual bool ExecuteInternal();
private:
JoinList m_Joins;
JoinList m_GhostJoins;
IntersectList m_IntersectList;
ClipType m_ClipType;
typedef std::list<cInt> MaximaList;
MaximaList m_Maxima;
TEdge *m_SortedEdges;
bool m_ExecuteLocked;
PolyFillType m_ClipFillType;
PolyFillType m_SubjFillType;
bool m_ReverseOutput;
bool m_UsingPolyTree;
bool m_StrictSimple;
#ifdef use_xyz
ZFillCallback m_ZFill; //custom callback
#endif
void SetWindingCount(TEdge& edge);
bool IsEvenOddFillType(const TEdge& edge) const;
bool IsEvenOddAltFillType(const TEdge& edge) const;
void InsertLocalMinimaIntoAEL(const cInt botY);
void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge);
void AddEdgeToSEL(TEdge *edge);
bool PopEdgeFromSEL(TEdge *&edge);
void CopyAELToSEL();
void DeleteFromSEL(TEdge *e);
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
bool IsContributing(const TEdge& edge) const;
bool IsTopHorz(const cInt XPos);
void DoMaxima(TEdge *e);
void ProcessHorizontals();
void ProcessHorizontal(TEdge *horzEdge);
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutRec* GetOutRec(int idx);
void AppendPolygon(TEdge *e1, TEdge *e2);
void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
OutPt* AddOutPt(TEdge *e, const IntPoint &pt);
OutPt* GetLastOutPt(TEdge *e);
bool ProcessIntersections(const cInt topY);
void BuildIntersectList(const cInt topY);
void ProcessIntersectList();
void ProcessEdgesAtTopOfScanbeam(const cInt topY);
void BuildResult(Paths& polys);
void BuildResult2(PolyTree& polytree);
void SetHoleState(TEdge *e, OutRec *outrec);
void DisposeIntersectNodes();
bool FixupIntersectionOrder();
void FixupOutPolygon(OutRec &outrec);
void FixupOutPolyline(OutRec &outrec);
bool IsHole(TEdge *e);
bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
void FixHoleLinkage(OutRec &outrec);
void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt);
void ClearJoins();
void ClearGhostJoins();
void AddGhostJoin(OutPt *op, const IntPoint offPt);
bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2);
void JoinCommonEdges();
void DoSimplePolygons();
void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec);
void FixupFirstLefts2(OutRec* InnerOutRec, OutRec* OuterOutRec);
void FixupFirstLefts3(OutRec* OldOutRec, OutRec* NewOutRec);
#ifdef use_xyz
void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2);
#endif
};
//------------------------------------------------------------------------------
class ClipperOffset
{
public:
ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25);
~ClipperOffset();
void AddPath(const Path& path, JoinType joinType, EndType endType);
void AddPaths(const Paths& paths, JoinType joinType, EndType endType);
void Execute(Paths& solution, double delta);
void Execute(PolyTree& solution, double delta);
void Clear();
double MiterLimit;
double ArcTolerance;
private:
Paths m_destPolys;
Path m_srcPoly;
Path m_destPoly;
std::vector<DoublePoint> m_normals;
double m_delta, m_sinA, m_sin, m_cos;
double m_miterLim, m_StepsPerRad;
IntPoint m_lowest;
PolyNode m_polyNodes;
void FixOrientations();
void DoOffset(double delta);
void OffsetPoint(int j, int& k, JoinType jointype);
void DoSquare(int j, int k);
void DoMiter(int j, int k, double r);
void DoRound(int j, int k);
};
//------------------------------------------------------------------------------
class clipperException : public std::exception
{
public:
clipperException(const char* description): m_descr(description) {}
virtual ~clipperException() throw() {}
virtual const char* what() const throw() {return m_descr.c_str();}
private:
std::string m_descr;
};
//------------------------------------------------------------------------------
} //ClipperLib namespace
#endif //clipper_hpp
/*
pybind11/attr.h: Infrastructure for processing custom
type and function attributes
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "cast.h"
NAMESPACE_BEGIN(pybind11)
/// \addtogroup annotations
/// @{
/// Annotation for methods
struct is_method { handle class_; is_method(const handle &c) : class_(c) { } };
/// Annotation for operators
struct is_operator { };
/// Annotation for parent scope
struct scope { handle value; scope(const handle &s) : value(s) { } };
/// Annotation for documentation
struct doc { const char *value; doc(const char *value) : value(value) { } };
/// Annotation for function names
struct name { const char *value; name(const char *value) : value(value) { } };
/// Annotation indicating that a function is an overload associated with a given "sibling"
struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } };
/// Annotation indicating that a class derives from another given type
template <typename T> struct base {
PYBIND11_DEPRECATED("base<T>() was deprecated in favor of specifying 'T' as a template argument to class_")
base() { }
};
/// Keep patient alive while nurse lives
template <size_t Nurse, size_t Patient> struct keep_alive { };
/// Annotation indicating that a class is involved in a multiple inheritance relationship
struct multiple_inheritance { };
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
struct dynamic_attr { };
/// Annotation which enables the buffer protocol for a type
struct buffer_protocol { };
/// Annotation which requests that a special metaclass is created for a type
struct metaclass {
handle value;
PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.")
metaclass() {}
/// Override pybind11's default metaclass
explicit metaclass(handle value) : value(value) { }
};
/// Annotation to mark enums as an arithmetic type
struct arithmetic { };
/** \rst
A call policy which places one or more guard variables (``Ts...``) around the function call.
For example, this definition:
.. code-block:: cpp
m.def("foo", foo, py::call_guard<T>());
is equivalent to the following pseudocode:
.. code-block:: cpp
m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments
});
\endrst */
template <typename... Ts> struct call_guard;
template <> struct call_guard<> { using type = detail::void_type; };
template <typename T>
struct call_guard<T> {
static_assert(std::is_default_constructible<T>::value,
"The guard type must be default constructible");
using type = T;
};
template <typename T, typename... Ts>
struct call_guard<T, Ts...> {
struct type {
T guard{}; // Compose multiple guard types with left-to-right default-constructor order
typename call_guard<Ts...>::type next{};
};
};
/// @} annotations
NAMESPACE_BEGIN(detail)
/* Forward declarations */
enum op_id : int;
enum op_type : int;
struct undefined_t;
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_;
template <typename... Args> struct init;
template <typename... Args> struct init_alias;
inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
/// Internal data structure which holds metadata about a keyword argument
struct argument_record {
const char *name; ///< Argument name
const char *descr; ///< Human-readable version of the argument value
handle value; ///< Associated Python object
bool convert : 1; ///< True if the argument is allowed to convert when loading
bool none : 1; ///< True if None is allowed when loading
argument_record(const char *name, const char *descr, handle value, bool convert, bool none)
: name(name), descr(descr), value(value), convert(convert), none(none) { }
};
/// Internal data structure which holds metadata about a bound function (signature, overloads, etc.)
struct function_record {
function_record()
: is_constructor(false), is_stateless(false), is_operator(false),
has_args(false), has_kwargs(false), is_method(false) { }
/// Function name
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
// User-specified documentation string
char *doc = nullptr;
/// Human-readable version of the function signature
char *signature = nullptr;
/// List of registered keyword arguments
std::vector<argument_record> args;
/// Pointer to lambda function which converts arguments and performs the actual call
handle (*impl) (function_call &) = nullptr;
/// Storage for the wrapped function pointer and captured data, if any
void *data[3] = { };
/// Pointer to custom destructor for 'data' (if needed)
void (*free_data) (function_record *ptr) = nullptr;
/// Return value policy associated with this function
return_value_policy policy = return_value_policy::automatic;
/// True if name == '__init__'
bool is_constructor : 1;
/// True if this is a stateless function pointer
bool is_stateless : 1;
/// True if this is an operator (__add__), etc.
bool is_operator : 1;
/// True if the function has a '*args' argument
bool has_args : 1;
/// True if the function has a '**kwargs' argument
bool has_kwargs : 1;
/// True if this is a method
bool is_method : 1;
/// Number of arguments (including py::args and/or py::kwargs, if present)
std::uint16_t nargs;
/// Python method object
PyMethodDef *def = nullptr;
/// Python handle to the parent scope (a class or a module)
handle scope;
/// Python handle to the sibling function representing an overload chain
handle sibling;
/// Pointer to next overload
function_record *next = nullptr;
};
/// Special data structure which (temporarily) holds metadata about a bound class
struct type_record {
PYBIND11_NOINLINE type_record()
: multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false) { }
/// Handle to the parent scope
handle scope;
/// Name of the class
const char *name = nullptr;
// Pointer to RTTI type_info data structure
const std::type_info *type = nullptr;
/// How large is the underlying C++ type?
size_t type_size = 0;
/// How large is the type's holder?
size_t holder_size = 0;
/// The global operator new can be overridden with a class-specific variant
void *(*operator_new)(size_t) = ::operator new;
/// Function pointer to class_<..>::init_instance
void (*init_instance)(instance *, const void *) = nullptr;
/// Function pointer to class_<..>::dealloc
void (*dealloc)(const detail::value_and_holder &) = nullptr;
/// List of base classes of the newly created type
list bases;
/// Optional docstring
const char *doc = nullptr;
/// Custom metaclass (optional)
handle metaclass;
/// Multiple inheritance marker
bool multiple_inheritance : 1;
/// Does the class manage a __dict__?
bool dynamic_attr : 1;
/// Does the class implement the buffer protocol?
bool buffer_protocol : 1;
/// Is the default (unique_ptr) holder type used?
bool default_holder : 1;
PYBIND11_NOINLINE void add_base(const std::type_info &base, void *(*caster)(void *)) {
auto base_info = detail::get_type_info(base, false);
if (!base_info) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) +
"\" referenced unknown base type \"" + tname + "\"");
}
if (default_holder != base_info->default_holder) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) + "\" " +
(default_holder ? "does not have" : "has") +
" a non-default holder type while its base \"" + tname + "\" " +
(base_info->default_holder ? "does not" : "does"));
}
bases.append((PyObject *) base_info->type);
if (base_info->type->tp_dictoffset != 0)
dynamic_attr = true;
if (caster)
base_info->implicit_casts.emplace_back(type, caster);
}
};
inline function_call::function_call(function_record &f, handle p) :
func(f), parent(p) {
args.reserve(f.nargs);
args_convert.reserve(f.nargs);
}
/**
* Partial template specializations to process custom attributes provided to
* cpp_function_ and class_. These are either used to initialize the respective
* fields in the type_record and function_record data structures or executed at
* runtime to deal with custom call policies (e.g. keep_alive).
*/
template <typename T, typename SFINAE = void> struct process_attribute;
template <typename T> struct process_attribute_default {
/// Default implementation: do nothing
static void init(const T &, function_record *) { }
static void init(const T &, type_record *) { }
static void precall(function_call &) { }
static void postcall(function_call &, handle) { }
};
/// Process an attribute specifying the function's name
template <> struct process_attribute<name> : process_attribute_default<name> {
static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring
template <> struct process_attribute<doc> : process_attribute_default<doc> {
static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring (provided as a C-style string)
template <> struct process_attribute<const char *> : process_attribute_default<const char *> {
static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); }
};
template <> struct process_attribute<char *> : process_attribute<const char *> { };
/// Process an attribute indicating the function's return value policy
template <> struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
};
/// Process an attribute which indicates that this is an overloaded function associated with a given sibling
template <> struct process_attribute<sibling> : process_attribute_default<sibling> {
static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
};
/// Process an attribute which indicates that this function is a method
template <> struct process_attribute<is_method> : process_attribute_default<is_method> {
static void init(const is_method &s, function_record *r) { r->is_method = true; r->scope = s.class_; }
};
/// Process an attribute which indicates the parent scope of a method
template <> struct process_attribute<scope> : process_attribute_default<scope> {
static void init(const scope &s, function_record *r) { r->scope = s.value; }
};
/// Process an attribute which indicates that this function is an operator
template <> struct process_attribute<is_operator> : process_attribute_default<is_operator> {
static void init(const is_operator &, function_record *r) { r->is_operator = true; }
};
/// Process a keyword argument attribute (*without* a default value)
template <> struct process_attribute<arg> : process_attribute_default<arg> {
static void init(const arg &a, function_record *r) {
if (r->is_method && r->args.empty())
r->args.emplace_back("self", nullptr, handle(), true /*convert*/, false /*none not allowed*/);
r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert, a.flag_none);
}
};
/// Process a keyword argument attribute (*with* a default value)
template <> struct process_attribute<arg_v> : process_attribute_default<arg_v> {
static void init(const arg_v &a, function_record *r) {
if (r->is_method && r->args.empty())
r->args.emplace_back("self", nullptr /*descr*/, handle() /*parent*/, true /*convert*/, false /*none not allowed*/);
if (!a.value) {
#if !defined(NDEBUG)
std::string descr("'");
if (a.name) descr += std::string(a.name) + ": ";
descr += a.type + "'";
if (r->is_method) {
if (r->name)
descr += " in method '" + (std::string) str(r->scope) + "." + (std::string) r->name + "'";
else
descr += " in method of '" + (std::string) str(r->scope) + "'";
} else if (r->name) {
descr += " in function '" + (std::string) r->name + "'";
}
pybind11_fail("arg(): could not convert default argument "
+ descr + " into a Python object (type not registered yet?)");
#else
pybind11_fail("arg(): could not convert default argument "
"into a Python object (type not registered yet?). "
"Compile in debug mode for more information.");
#endif
}
r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert, a.flag_none);
}
};
/// Process a parent class attribute. Single inheritance only (class_ itself already guarantees that)
template <typename T>
struct process_attribute<T, enable_if_t<is_pyobject<T>::value>> : process_attribute_default<handle> {
static void init(const handle &h, type_record *r) { r->bases.append(h); }
};
/// Process a parent class attribute (deprecated, does not support multiple inheritance)
template <typename T>
struct process_attribute<base<T>> : process_attribute_default<base<T>> {
static void init(const base<T> &, type_record *r) { r->add_base(typeid(T), nullptr); }
};
/// Process a multiple inheritance attribute
template <>
struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> {
static void init(const multiple_inheritance &, type_record *r) { r->multiple_inheritance = true; }
};
template <>
struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> {
static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
};
template <>
struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> {
static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; }
};
template <>
struct process_attribute<metaclass> : process_attribute_default<metaclass> {
static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; }
};
/// Process an 'arithmetic' attribute for enums (does nothing here)
template <>
struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
template <typename... Ts>
struct process_attribute<call_guard<Ts...>> : process_attribute_default<call_guard<Ts...>> { };
/**
* Process a keep_alive call policy -- invokes keep_alive_impl during the
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler
* otherwise
*/
template <size_t Nurse, size_t Patient> struct process_attribute<keep_alive<Nurse, Patient>> : public process_attribute_default<keep_alive<Nurse, Patient>> {
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void precall(function_call &call) { keep_alive_impl(Nurse, Patient, call, handle()); }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void postcall(function_call &, handle) { }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void precall(function_call &) { }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void postcall(function_call &call, handle ret) { keep_alive_impl(Nurse, Patient, call, ret); }
};
/// Recursively iterate over variadic template arguments
template <typename... Args> struct process_attributes {
static void init(const Args&... args, function_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void init(const Args&... args, type_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void precall(function_call &call) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::precall(call), 0) ... };
ignore_unused(unused);
}
static void postcall(function_call &call, handle fn_ret) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0) ... };
ignore_unused(unused);
}
};
template <typename T>
using is_call_guard = is_instantiation<call_guard, T>;
/// Extract the ``type`` from the first `call_guard` in `Extras...` (or `void_type` if none found)
template <typename... Extra>
using extract_guard_t = typename exactly_one_t<is_call_guard, call_guard<>, Extra...>::type;
/// Check the number of named arguments at compile time
template <typename... Extra,
size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...),
size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)>
constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) {
return named == 0 || (self + named + has_args + has_kwargs) == nargs;
}
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
/*
pybind11/buffer_info.h: Python buffer object interface
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
NAMESPACE_BEGIN(pybind11)
/// Information record describing a Python buffer object
struct buffer_info {
void *ptr = nullptr; // Pointer to the underlying storage
ssize_t itemsize = 0; // Size of individual items in bytes
ssize_t size = 0; // Total number of entries
std::string format; // For homogeneous buffers, this should be set to format_descriptor<T>::format()
ssize_t ndim = 0; // Number of dimensions
std::vector<ssize_t> shape; // Shape of the tensor (1 entry per dimension)
std::vector<ssize_t> strides; // Number of entries between adjacent entries (for each per dimension)
buffer_info() { }
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
: ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim),
shape(std::move(shape_in)), strides(std::move(strides_in)) {
if (ndim != (ssize_t) shape.size() || ndim != (ssize_t) strides.size())
pybind11_fail("buffer_info: ndim doesn't match shape and/or strides length");
for (size_t i = 0; i < (size_t) ndim; ++i)
size *= shape[i];
}
template <typename T>
buffer_info(T *ptr, detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
: buffer_info(private_ctr_tag(), ptr, sizeof(T), format_descriptor<T>::format(), static_cast<ssize_t>(shape_in->size()), std::move(shape_in), std::move(strides_in)) { }
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t size)
: buffer_info(ptr, itemsize, format, 1, {size}, {itemsize}) { }
template <typename T>
buffer_info(T *ptr, ssize_t size)
: buffer_info(ptr, sizeof(T), format_descriptor<T>::format(), size) { }
explicit buffer_info(Py_buffer *view, bool ownview = true)
: buffer_info(view->buf, view->itemsize, view->format, view->ndim,
{view->shape, view->shape + view->ndim}, {view->strides, view->strides + view->ndim}) {
this->view = view;
this->ownview = ownview;
}
buffer_info(const buffer_info &) = delete;
buffer_info& operator=(const buffer_info &) = delete;
buffer_info(buffer_info &&other) {
(*this) = std::move(other);
}
buffer_info& operator=(buffer_info &&rhs) {
ptr = rhs.ptr;
itemsize = rhs.itemsize;
size = rhs.size;
format = std::move(rhs.format);
ndim = rhs.ndim;
shape = std::move(rhs.shape);
strides = std::move(rhs.strides);
std::swap(view, rhs.view);
std::swap(ownview, rhs.ownview);
return *this;
}
~buffer_info() {
if (view && ownview) { PyBuffer_Release(view); delete view; }
}
private:
struct private_ctr_tag { };
buffer_info(private_ctr_tag, void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
detail::any_container<ssize_t> &&shape_in, detail::any_container<ssize_t> &&strides_in)
: buffer_info(ptr, itemsize, format, ndim, std::move(shape_in), std::move(strides_in)) { }
Py_buffer *view = nullptr;
bool ownview = false;
};
NAMESPACE_BEGIN(detail)
template <typename T, typename SFINAE = void> struct compare_buffer_info {
static bool compare(const buffer_info& b) {
return b.format == format_descriptor<T>::format() && b.itemsize == (ssize_t) sizeof(T);
}
};
template <typename T> struct compare_buffer_info<T, detail::enable_if_t<std::is_integral<T>::value>> {
static bool compare(const buffer_info& b) {
return (size_t) b.itemsize == sizeof(T) && (b.format == format_descriptor<T>::value ||
((sizeof(T) == sizeof(long)) && b.format == (std::is_unsigned<T>::value ? "L" : "l")) ||
((sizeof(T) == sizeof(size_t)) && b.format == (std::is_unsigned<T>::value ? "N" : "n")));
}
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
This diff is collapsed.
/*
pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime
Copyright (c) 2016 Trent Houliston <trent@houliston.me> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <cmath>
#include <ctime>
#include <chrono>
#include <datetime.h>
// Backport the PyDateTime_DELTA functions from Python3.3 if required
#ifndef PyDateTime_DELTA_GET_DAYS
#define PyDateTime_DELTA_GET_DAYS(o) (((PyDateTime_Delta*)o)->days)
#endif
#ifndef PyDateTime_DELTA_GET_SECONDS
#define PyDateTime_DELTA_GET_SECONDS(o) (((PyDateTime_Delta*)o)->seconds)
#endif
#ifndef PyDateTime_DELTA_GET_MICROSECONDS
#define PyDateTime_DELTA_GET_MICROSECONDS(o) (((PyDateTime_Delta*)o)->microseconds)
#endif
NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)
template <typename type> class duration_caster {
public:
typedef typename type::rep rep;
typedef typename type::period period;
typedef std::chrono::duration<uint_fast32_t, std::ratio<86400>> days;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
if (!src) return false;
// If invoked with datetime.delta object
if (PyDelta_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(
days(PyDateTime_DELTA_GET_DAYS(src.ptr()))
+ seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr()))
+ microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr()))));
return true;
}
// If invoked with a float we assume it is seconds and convert
else if (PyFloat_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(duration<double>(PyFloat_AsDouble(src.ptr()))));
return true;
}
else return false;
}
// If this is a duration just return it back
static const std::chrono::duration<rep, period>& get_duration(const std::chrono::duration<rep, period> &src) {
return src;
}
// If this is a time_point get the time_since_epoch
template <typename Clock> static std::chrono::duration<rep, period> get_duration(const std::chrono::time_point<Clock, std::chrono::duration<rep, period>> &src) {
return src.time_since_epoch();
}
static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Use overloaded function to get our duration from our source
// Works out if it is a duration or time_point and get the duration
auto d = get_duration(src);
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
// Declare these special duration types so the conversions happen with the correct primitive types (int)
using dd_t = duration<int, std::ratio<86400>>;
using ss_t = duration<int, std::ratio<1>>;
using us_t = duration<int, std::micro>;
auto dd = duration_cast<dd_t>(d);
auto subd = d - dd;
auto ss = duration_cast<ss_t>(subd);
auto us = duration_cast<us_t>(subd - ss);
return PyDelta_FromDSU(dd.count(), ss.count(), us.count());
}
PYBIND11_TYPE_CASTER(type, _("datetime.timedelta"));
};
// This is for casting times on the system clock into datetime.datetime instances
template <typename Duration> class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
public:
typedef std::chrono::time_point<std::chrono::system_clock, Duration> type;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
if (!src) return false;
if (PyDateTime_Check(src.ptr())) {
std::tm cal;
cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr());
cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr());
cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr());
cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
cal.tm_isdst = -1;
value = system_clock::from_time_t(std::mktime(&cal)) + microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr()));
return true;
}
else return false;
}
static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
std::time_t tt = system_clock::to_time_t(src);
// this function uses static memory so it's best to copy it out asap just in case
// otherwise other code that is using localtime may break this (not just python code)
std::tm localtime = *std::localtime(&tt);
// Declare these special duration types so the conversions happen with the correct primitive types (int)
using us_t = duration<int, std::micro>;
return PyDateTime_FromDateAndTime(localtime.tm_year + 1900,
localtime.tm_mon + 1,
localtime.tm_mday,
localtime.tm_hour,
localtime.tm_min,
localtime.tm_sec,
(duration_cast<us_t>(src.time_since_epoch() % seconds(1))).count());
}
PYBIND11_TYPE_CASTER(type, _("datetime.datetime"));
};
// Other clocks that are not the system clock are not measured as datetime.datetime objects
// since they are not measured on calendar time. So instead we just make them timedeltas
// Or if they have passed us a time as a float we convert that
template <typename Clock, typename Duration> class type_caster<std::chrono::time_point<Clock, Duration>>
: public duration_caster<std::chrono::time_point<Clock, Duration>> {
};
template <typename Rep, typename Period> class type_caster<std::chrono::duration<Rep, Period>>
: public duration_caster<std::chrono::duration<Rep, Period>> {
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment