Unverified Commit 01c4ee5d authored by MissPenguin's avatar MissPenguin Committed by GitHub
Browse files

Merge pull request #3106 from MissPenguin/dygraph

add train code for table
parents 7bcea8d0 7bcabe0f
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
class TableAttentionHead(nn.Layer):
def __init__(self, in_channels, hidden_size, loc_type, in_max_len=488, **kwargs):
super(TableAttentionHead, self).__init__()
self.input_size = in_channels[-1]
self.hidden_size = hidden_size
self.elem_num = 30
self.max_text_length = 100
self.max_elem_length = 500
self.max_cell_num = 500
self.structure_attention_cell = AttentionGRUCell(
self.input_size, hidden_size, self.elem_num, use_gru=False)
self.structure_generator = nn.Linear(hidden_size, self.elem_num)
self.loc_type = loc_type
self.in_max_len = in_max_len
if self.loc_type == 1:
self.loc_generator = nn.Linear(hidden_size, 4)
else:
if self.in_max_len == 640:
self.loc_fea_trans = nn.Linear(400, self.max_elem_length+1)
elif self.in_max_len == 800:
self.loc_fea_trans = nn.Linear(625, self.max_elem_length+1)
else:
self.loc_fea_trans = nn.Linear(256, self.max_elem_length+1)
self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None):
# if and else branch are both needed when you want to assign a variable
# if you modify the var in just one branch, then the modification will not work.
fea = inputs[-1]
if len(fea.shape) == 3:
pass
else:
last_shape = int(np.prod(fea.shape[2:])) # gry added
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
batch_size = fea.shape[0]
hidden = paddle.zeros((batch_size, self.hidden_size))
output_hiddens = []
if self.training and targets is not None:
structure = targets[0]
for i in range(self.max_elem_length+1):
elem_onehots = self._char_to_onehot(
structure[:, i], onehot_dim=self.elem_num)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
output = paddle.concat(output_hiddens, axis=1)
structure_probs = self.structure_generator(output)
if self.loc_type == 1:
loc_preds = self.loc_generator(output)
loc_preds = F.sigmoid(loc_preds)
else:
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
else:
temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
structure_probs = None
loc_preds = None
elem_onehots = None
outputs = None
alpha = None
max_elem_length = paddle.to_tensor(self.max_elem_length)
i = 0
while i < max_elem_length+1:
elem_onehots = self._char_to_onehot(
temp_elem, onehot_dim=self.elem_num)
(outputs, hidden), alpha = self.structure_attention_cell(
hidden, fea, elem_onehots)
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
structure_probs_step = self.structure_generator(outputs)
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
i += 1
output = paddle.concat(output_hiddens, axis=1)
structure_probs = self.structure_generator(output)
structure_probs = F.softmax(structure_probs)
if self.loc_type == 1:
loc_preds = self.loc_generator(output)
loc_preds = F.sigmoid(loc_preds)
else:
loc_fea = fea.transpose([0, 2, 1])
loc_fea = self.loc_fea_trans(loc_fea)
loc_fea = loc_fea.transpose([0, 2, 1])
loc_concat = paddle.concat([output, loc_fea], axis=2)
loc_preds = self.loc_generator(loc_concat)
loc_preds = F.sigmoid(loc_preds)
return {'structure_probs':structure_probs, 'loc_preds':loc_preds}
class AttentionGRUCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionGRUCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
class AttentionLSTM(nn.Layer):
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
super(AttentionLSTM, self).__init__()
self.input_size = in_channels
self.hidden_size = hidden_size
self.num_classes = out_channels
self.attention_cell = AttentionLSTMCell(
in_channels, hidden_size, out_channels, use_gru=False)
self.generator = nn.Linear(hidden_size, out_channels)
def _char_to_onehot(self, input_char, onehot_dim):
input_ont_hot = F.one_hot(input_char, onehot_dim)
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = inputs.shape[0]
num_steps = batch_max_length
hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
(batch_size, self.hidden_size)))
output_hiddens = []
if targets is not None:
for i in range(num_steps):
# one-hot vectors for a i-th char
char_onehots = self._char_to_onehot(
targets[:, i], onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
hidden = (hidden[1][0], hidden[1][1])
output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
output = paddle.concat(output_hiddens, axis=1)
probs = self.generator(output)
else:
targets = paddle.zeros(shape=[batch_size], dtype="int32")
probs = None
for i in range(num_steps):
char_onehots = self._char_to_onehot(
targets, onehot_dim=self.num_classes)
hidden, alpha = self.attention_cell(hidden, inputs,
char_onehots)
probs_step = self.generator(hidden[0])
hidden = (hidden[1][0], hidden[1][1])
if probs is None:
probs = paddle.unsqueeze(probs_step, axis=1)
else:
probs = paddle.concat(
[probs, paddle.unsqueeze(
probs_step, axis=1)], axis=1)
next_input = probs_step.argmax(axis=1)
targets = next_input
return probs
class AttentionLSTMCell(nn.Layer):
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
super(AttentionLSTMCell, self).__init__()
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
if not use_gru:
self.rnn = nn.LSTMCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
else:
self.rnn = nn.GRUCell(
input_size=input_size + num_embeddings, hidden_size=hidden_size)
self.hidden_size = hidden_size
def forward(self, prev_hidden, batch_H, char_onehots):
batch_H_proj = self.i2h(batch_H)
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
res = paddle.add(batch_H_proj, prev_hidden_proj)
res = paddle.tanh(res)
e = self.score(res)
alpha = F.softmax(e, axis=1)
alpha = paddle.transpose(alpha, [0, 2, 1])
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
concat_context = paddle.concat([context, char_onehots], 1)
cur_hidden = self.rnn(concat_context, prev_hidden)
return cur_hidden, alpha
......@@ -21,7 +21,8 @@ def build_neck(config):
from .sast_fpn import SASTFPN
from .rnn import SequenceEncoder
from .pg_fpn import PGFPN
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN']
from .table_fpn import TableFPN
support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format(
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class TableFPN(nn.Layer):
def __init__(self, in_channels, out_channels, **kwargs):
super(TableFPN, self).__init__()
self.out_channels = 512
weight_attr = paddle.nn.initializer.KaimingUniform()
self.in2_conv = nn.Conv2D(
in_channels=in_channels[0],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.in3_conv = nn.Conv2D(
in_channels=in_channels[1],
out_channels=self.out_channels,
kernel_size=1,
stride = 1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.in4_conv = nn.Conv2D(
in_channels=in_channels[2],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.in5_conv = nn.Conv2D(
in_channels=in_channels[3],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p5_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p4_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p3_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.p2_conv = nn.Conv2D(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
self.fuse_conv = nn.Conv2D(
in_channels=self.out_channels * 4,
out_channels=512,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=weight_attr), bias_attr=False)
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.in5_conv(c5)
in4 = self.in4_conv(c4)
in3 = self.in3_conv(c3)
in2 = self.in2_conv(c2)
out4 = in4 + F.upsample(
in5, size=in4.shape[2:4], mode="nearest", align_mode=1) # 1/16
out3 = in3 + F.upsample(
out4, size=in3.shape[2:4], mode="nearest", align_mode=1) # 1/8
out2 = in2 + F.upsample(
out3, size=in2.shape[2:4], mode="nearest", align_mode=1) # 1/4
p4 = F.upsample(out4, size=in5.shape[2:4], mode="nearest", align_mode=1)
p3 = F.upsample(out3, size=in5.shape[2:4], mode="nearest", align_mode=1)
p2 = F.upsample(out2, size=in5.shape[2:4], mode="nearest", align_mode=1)
fuse = paddle.concat([in5, p4, p3, p2], axis=1)
fuse_conv = self.fuse_conv(fuse) * 0.005
return [c5 + fuse_conv]
......@@ -55,6 +55,7 @@ def main():
model = build_model(config['Architecture'])
use_srn = config['Architecture']['algorithm'] == "SRN"
model_type = config['Architecture']['model_type']
best_model_dict = init_model(config, model)
if len(best_model_dict):
......@@ -67,7 +68,7 @@ def main():
# start eval
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class, use_srn)
eval_class, model_type, use_srn)
logger.info('metric eval ***************')
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
......
......@@ -60,7 +60,8 @@ def export_single_model(model, arch_config, save_path, logger):
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape[-1] = 100
elif arch_config["model_type"] == "table":
infer_shape = [3, 488, 488]
model = to_static(
model,
input_spec=[
......
......@@ -331,10 +331,11 @@ def create_predictor(args, mode, logger):
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
if mode == 'structure':
config.delete_pass("fc_fuse_pass") # not supported for table
config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True)
if mode == 'structure':
config.switch_ir_optim(False)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
import json
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle
from paddle.jit import to_static
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
import cv2
def main(config, device, logger, vdl_writer):
global_config = config['Global']
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
if hasattr(post_process_class, 'character'):
config['Architecture']["Head"]['out_channels'] = len(
getattr(post_process_class, 'character'))
model = build_model(config['Architecture'])
init_model(config, model, logger)
# create data ops
transforms = []
use_padding = False
for op in config['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Label' in op_name:
continue
if op_name == 'KeepKeys':
op[op_name]['keep_keys'] = ['image']
if op_name == "ResizeTableImage":
use_padding = True
padding_max_len = op['ResizeTableImage']['max_len']
transforms.append(op)
global_config['infer_mode'] = True
ops = create_operators(transforms, global_config)
model.eval()
for file in get_image_file_list(config['Global']['infer_img']):
logger.info("infer_img: {}".format(file))
with open(file, 'rb') as f:
img = f.read()
data = {'image': img}
batch = transform(data, ops)
images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds)
res_html_code = post_result['res_html_code']
res_loc = post_result['res_loc']
img = cv2.imread(file)
imgh, imgw = img.shape[0:2]
res_loc_final = []
for rno in range(len(res_loc[0])):
x0, y0, x1, y1 = res_loc[0][rno]
left = max(int(imgw * x0), 0)
top = max(int(imgh * y0), 0)
right = min(int(imgw * x1), imgw - 1)
bottom = min(int(imgh * y1), imgh - 1)
cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
res_loc_final.append([left, top, right, bottom])
res_loc_str = json.dumps(res_loc_final)
logger.info("result: {}, {}".format(res_html_code, res_loc_final))
logger.info("success!")
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main(config, device, logger, vdl_writer)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -186,6 +186,7 @@ def train(config,
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
model_type = config['Architecture']['model_type']
if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch']
......@@ -208,9 +209,9 @@ def train(config,
lr = optimizer.get_lr()
images = batch[0]
if use_srn:
others = batch[-4:]
preds = model(images, others)
model_average = True
if use_srn or model_type == 'table':
preds = model(images, data=batch[1:])
else:
preds = model(images)
loss = loss_class(preds, batch)
......@@ -232,8 +233,11 @@ def train(config,
if cal_metric_during_train: # only rec and cls need
batch = [item.numpy() for item in batch]
post_result = post_process_class(preds, batch[1])
eval_class(post_result, batch)
if model_type == 'table':
eval_class(preds, batch)
else:
post_result = post_process_class(preds, batch[1])
eval_class(post_result, batch)
metric = eval_class.get_metric()
train_stats.update(metric)
......@@ -269,6 +273,7 @@ def train(config,
valid_dataloader,
post_process_class,
eval_class,
model_type,
use_srn=use_srn)
cur_metric_str = 'cur metric, {}'.format(', '.join(
['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
......@@ -336,7 +341,11 @@ def train(config,
return
def eval(model, valid_dataloader, post_process_class, eval_class,
def eval(model,
valid_dataloader,
post_process_class,
eval_class,
model_type,
use_srn=False):
model.eval()
with paddle.no_grad():
......@@ -350,19 +359,19 @@ def eval(model, valid_dataloader, post_process_class, eval_class,
break
images = batch[0]
start = time.time()
if use_srn:
others = batch[-4:]
preds = model(images, others)
if use_srn or model_type == 'table':
preds = model(images, data=batch[1:])
else:
preds = model(images)
batch = [item.numpy() for item in batch]
# Obtain usable results from post-processing methods
post_result = post_process_class(preds, batch[1])
total_time += time.time() - start
# Evaluate the results of the current batch
eval_class(post_result, batch)
if model_type == 'table':
eval_class(preds, batch)
else:
post_result = post_process_class(preds, batch[1])
eval_class(post_result, batch)
pbar.update(1)
total_frame += len(images)
# Get final metric,eg. acc or hmean
......@@ -386,7 +395,7 @@ def preprocess(is_train=False):
alg = config['Architecture']['algorithm']
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
'CLS', 'PGNet', 'Distillation'
'CLS', 'PGNet', 'Distillation', 'TableAttn'
]
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment