@@ -251,6 +285,16 @@ More parameters are as follows,
...
@@ -251,6 +285,16 @@ More parameters are as follows,
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
|output|str|./output|Path where visualization results are saved|
|output|str|./output|Path where visualization results are saved|
- forward
|parameter|data type|default|meaning|
| :---: | :---: | :---: | :---: |
|det|bool|true|前向是否执行文字检测|
|rec|bool|true|前向是否执行文字识别|
|cls|bool|false|前向是否执行文字方向分类|
- Detection related parameters
- Detection related parameters
|parameter|data type|default|meaning|
|parameter|data type|default|meaning|
...
@@ -260,7 +304,7 @@ More parameters are as follows,
...
@@ -260,7 +304,7 @@ More parameters are as follows,
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|det_db_score_mode|string|slow| slow: use polygon box to calculate bbox score, fast: use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
- Classifier related parameters
- Classifier related parameters
...
@@ -270,6 +314,7 @@ More parameters are as follows,
...
@@ -270,6 +314,7 @@ More parameters are as follows,
|use_angle_cls|bool|false|Whether to use the direction classifier|
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the direction classifier|
|cls_thresh|float|0.9|Score threshold of the direction classifier|
|cls_batch_num|int|1|batch size of classifier|
- Recognition related parameters
- Recognition related parameters
...
@@ -277,15 +322,22 @@ More parameters are as follows,
...
@@ -277,15 +322,22 @@ More parameters are as follows,
| --- | --- | --- | --- |
| --- | --- | --- | --- |
|rec_model_dir|string|-|Address of recognition inference model|
|rec_model_dir|string|-|Address of recognition inference model|
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
The detection results will be shown on the screen, which is as follows.
The detection results will be shown on the screen, which is as follows.