"test/vscode:/vscode.git/clone" did not exist on "a34429e932a7ad9cf029a985332d80d3559f7188"
kie_unet_sdmgr.py 5.94 KB
Newer Older
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
LDOUBLEV's avatar
debug  
LDOUBLEV committed
21
22
import numpy as np
import cv2
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
23
24
25
26
27
28
29
30

__all__ = ["Kie_backbone"]


class Encoder(nn.Layer):
    def __init__(self, num_channels, num_filters):
        super(Encoder, self).__init__()
        self.conv1 = nn.Conv2D(
LDOUBLEV's avatar
debug  
LDOUBLEV committed
31
32
33
34
35
36
            num_channels,
            num_filters,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
37
38
39
        self.bn1 = nn.BatchNorm(num_filters, act='relu')

        self.conv2 = nn.Conv2D(
LDOUBLEV's avatar
debug  
LDOUBLEV committed
40
41
42
43
44
45
            num_filters,
            num_filters,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        self.bn2 = nn.BatchNorm(num_filters, act='relu')

        self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)

    def forward(self, inputs):
        x = self.conv1(inputs)
        x = self.bn1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x_pooled = self.pool(x)
        return x, x_pooled


class Decoder(nn.Layer):
    def __init__(self, num_channels, num_filters):
        super(Decoder, self).__init__()
LDOUBLEV's avatar
debug  
LDOUBLEV committed
62

LDOUBLEV's avatar
add kie  
LDOUBLEV committed
63
        self.conv1 = nn.Conv2D(
LDOUBLEV's avatar
debug  
LDOUBLEV committed
64
65
66
67
68
69
            num_channels,
            num_filters,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
70
71
72
        self.bn1 = nn.BatchNorm(num_filters, act='relu')

        self.conv2 = nn.Conv2D(
LDOUBLEV's avatar
debug  
LDOUBLEV committed
73
74
75
76
77
78
            num_filters,
            num_filters,
            kernel_size=3,
            stride=1,
            padding=1,
            bias_attr=False)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
79
80
        self.bn2 = nn.BatchNorm(num_filters, act='relu')

LDOUBLEV's avatar
debug  
LDOUBLEV committed
81
82
83
84
85
86
87
88
89
        self.conv0 = nn.Conv2D(
            num_channels,
            num_filters,
            kernel_size=1,
            stride=1,
            padding=0,
            bias_attr=False)
        self.bn0 = nn.BatchNorm(num_filters, act='relu')

LDOUBLEV's avatar
add kie  
LDOUBLEV committed
90
    def forward(self, inputs_prev, inputs):
LDOUBLEV's avatar
debug  
LDOUBLEV committed
91
92
93
94
        x = self.conv0(inputs)
        x = self.bn0(x)
        x = paddle.nn.functional.interpolate(
            x, scale_factor=2, mode='bilinear', align_corners=False)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        x = paddle.concat([inputs_prev, x], axis=1)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        return x


class UNet(nn.Layer):
    def __init__(self):
        super(UNet, self).__init__()
        self.down1 = Encoder(num_channels=3, num_filters=16)
        self.down2 = Encoder(num_channels=16, num_filters=32)
        self.down3 = Encoder(num_channels=32, num_filters=64)
        self.down4 = Encoder(num_channels=64, num_filters=128)
        self.down5 = Encoder(num_channels=128, num_filters=256)

        self.up1 = Decoder(32, 16)
LDOUBLEV's avatar
debug  
LDOUBLEV committed
113
114
115
        self.up2 = Decoder(64, 32)
        self.up3 = Decoder(128, 64)
        self.up4 = Decoder(256, 128)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
116
117
118
        self.out_channels = 16

    def forward(self, inputs):
LDOUBLEV's avatar
debug  
LDOUBLEV committed
119
120
121
122
123
        x1, _ = self.down1(inputs)
        _, x2 = self.down2(x1)
        _, x3 = self.down3(x2)
        _, x4 = self.down4(x3)
        _, x5 = self.down5(x4)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        x = self.up4(x4, x5)
        x = self.up3(x3, x)
        x = self.up2(x2, x)
        x = self.up1(x1, x)
        return x


class Kie_backbone(nn.Layer):
    def __init__(self, in_channels, **kwargs):
        super(Kie_backbone, self).__init__()
        self.out_channels = 16
        self.img_feat = UNet()
        self.maxpool = nn.MaxPool2D(kernel_size=7)

    def bbox2roi(self, bbox_list):
        rois_list = []
        rois_num = []
        for img_id, bboxes in enumerate(bbox_list):
            rois_num.append(bboxes.shape[0])
            rois_list.append(bboxes)
        rois = paddle.concat(rois_list, 0)
        rois_num = paddle.to_tensor(rois_num, dtype='int32')
        return rois, rois_num

LDOUBLEV's avatar
debug  
LDOUBLEV committed
149
150
151
152
    def pre_process(self, img, relations, texts, gt_bboxes, tag, img_size):
        img, relations, texts, gt_bboxes, tag, img_size = img.numpy(
        ), relations.numpy(), texts.numpy(), gt_bboxes.numpy(), tag.numpy(
        ).tolist(), img_size.numpy()
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
153
        temp_relations, temp_texts, temp_gt_bboxes = [], [], []
LDOUBLEV's avatar
debug  
LDOUBLEV committed
154
155
        h, w = int(np.max(img_size[:, 0])), int(np.max(img_size[:, 1]))
        img = paddle.to_tensor(img[:, :, :h, :w])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
156
157
158
159
160
161
162
163
164
165
166
167
        batch = len(tag)
        for i in range(batch):
            num, recoder_len = tag[i][0], tag[i][1]
            temp_relations.append(
                paddle.to_tensor(
                    relations[i, :num, :num, :], dtype='float32'))
            temp_texts.append(
                paddle.to_tensor(
                    texts[i, :num, :recoder_len], dtype='float32'))
            temp_gt_bboxes.append(
                paddle.to_tensor(
                    gt_bboxes[i, :num, ...], dtype='float32'))
LDOUBLEV's avatar
debug  
LDOUBLEV committed
168
        return img, temp_relations, temp_texts, temp_gt_bboxes
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
169

LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
    def forward(self, inputs):
        img = inputs[0]
        relations, texts, gt_bboxes, tag, img_size = inputs[1], inputs[
            2], inputs[3], inputs[5], inputs[-1]
LDOUBLEV's avatar
debug  
LDOUBLEV committed
174
175
        img, relations, texts, gt_bboxes = self.pre_process(
            img, relations, texts, gt_bboxes, tag, img_size)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
176
177
178
179
180
181
182
183
184
185
186
        x = self.img_feat(img)
        boxes, rois_num = self.bbox2roi(gt_bboxes)
        feats = paddle.fluid.layers.roi_align(
            x,
            boxes,
            spatial_scale=1.0,
            pooled_height=7,
            pooled_width=7,
            rois_num=rois_num)
        feats = self.maxpool(feats).squeeze(-1).squeeze(-1)
        return [relations, texts, feats]