table_att_loss.py 4.36 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
from paddle.nn import functional as F

class TableAttentionLoss(nn.Layer):
    def __init__(self, structure_weight, loc_weight, use_giou=False, giou_weight=1.0, **kwargs):
        super(TableAttentionLoss, self).__init__()
        self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none')
        self.structure_weight = structure_weight
        self.loc_weight = loc_weight
        self.use_giou = use_giou
        self.giou_weight = giou_weight
        
    def giou_loss(self, preds, bbox, eps=1e-7, reduction='mean'):
        '''
        :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
        :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
        :return: loss
        '''
tink2123's avatar
tink2123 committed
38
39
40
41
        ix1 = paddle.maximum(preds[:, 0], bbox[:, 0])
        iy1 = paddle.maximum(preds[:, 1], bbox[:, 1])
        ix2 = paddle.minimum(preds[:, 2], bbox[:, 2])
        iy2 = paddle.minimum(preds[:, 3], bbox[:, 3])
MissPenguin's avatar
MissPenguin committed
42

tink2123's avatar
tink2123 committed
43
44
        iw = paddle.clip(ix2 - ix1 + 1e-3, 0., 1e10)
        ih = paddle.clip(iy2 - iy1 + 1e-3, 0., 1e10)
MissPenguin's avatar
MissPenguin committed
45
46
47
48
49
50
51
52
53
54
55
56

        # overlap
        inters = iw * ih

        # union
        uni = (preds[:, 2] - preds[:, 0] + 1e-3) * (preds[:, 3] - preds[:, 1] + 1e-3
            ) + (bbox[:, 2] - bbox[:, 0] + 1e-3) * (
            bbox[:, 3] - bbox[:, 1] + 1e-3) - inters + eps

        # ious
        ious = inters / uni

tink2123's avatar
tink2123 committed
57
58
59
60
61
62
        ex1 = paddle.minimum(preds[:, 0], bbox[:, 0])
        ey1 = paddle.minimum(preds[:, 1], bbox[:, 1])
        ex2 = paddle.maximum(preds[:, 2], bbox[:, 2])
        ey2 = paddle.maximum(preds[:, 3], bbox[:, 3])
        ew = paddle.clip(ex2 - ex1 + 1e-3, 0., 1e10)
        eh = paddle.clip(ey2 - ey1 + 1e-3, 0., 1e10)
MissPenguin's avatar
MissPenguin committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        # enclose erea
        enclose = ew * eh + eps
        giou = ious - (enclose - uni) / enclose

        loss = 1 - giou

        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        else:
            raise NotImplementedError
        return loss

    def forward(self, predicts, batch):
        structure_probs = predicts['structure_probs']
        structure_targets = batch[1].astype("int64")
        structure_targets = structure_targets[:, 1:]
        if len(batch) == 6:
            structure_mask = batch[5].astype("int64")
            structure_mask = structure_mask[:, 1:]
            structure_mask = paddle.reshape(structure_mask, [-1])
        structure_probs = paddle.reshape(structure_probs, [-1, structure_probs.shape[-1]])
        structure_targets = paddle.reshape(structure_targets, [-1])
        structure_loss = self.loss_func(structure_probs, structure_targets)
        
        if len(batch) == 6:
             structure_loss = structure_loss * structure_mask
            
#         structure_loss = paddle.sum(structure_loss) * self.structure_weight
        structure_loss = paddle.mean(structure_loss) * self.structure_weight
        
        loc_preds = predicts['loc_preds']
        loc_targets = batch[2].astype("float32")
        loc_targets_mask = batch[4].astype("float32")
        loc_targets = loc_targets[:, 1:, :]
        loc_targets_mask = loc_targets_mask[:, 1:, :]
        loc_loss = F.mse_loss(loc_preds * loc_targets_mask, loc_targets) * self.loc_weight
        if self.use_giou:
            loc_loss_giou = self.giou_loss(loc_preds * loc_targets_mask, loc_targets) * self.giou_weight
            total_loss = structure_loss + loc_loss + loc_loss_giou
            return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss, "loc_loss_giou":loc_loss_giou}
        else:
            total_loss = structure_loss + loc_loss            
            return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss}