make_border_map.py 5.58 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# -*- coding:utf-8 -*- 

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2

np.seterr(divide='ignore', invalid='ignore')
import pyclipper
from shapely.geometry import Polygon
import sys
import warnings

warnings.simplefilter("ignore")

__all__ = ['MakeBorderMap']


class MakeBorderMap(object):
    def __init__(self,
                 shrink_ratio=0.4,
                 thresh_min=0.3,
                 thresh_max=0.7,
                 **kwargs):
        self.shrink_ratio = shrink_ratio
        self.thresh_min = thresh_min
        self.thresh_max = thresh_max

dyning's avatar
dyning committed
32
    def __call__(self, data):
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        img = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']

        canvas = np.zeros(img.shape[:2], dtype=np.float32)
        mask = np.zeros(img.shape[:2], dtype=np.float32)

        for i in range(len(text_polys)):
            if ignore_tags[i]:
                continue
            self.draw_border_map(text_polys[i], canvas, mask=mask)
        canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min

        data['threshold_map'] = canvas
        data['threshold_mask'] = mask
        return data

    def draw_border_map(self, polygon, canvas, mask):
        polygon = np.array(polygon)
        assert polygon.ndim == 2
        assert polygon.shape[1] == 2

        polygon_shape = Polygon(polygon)
        if polygon_shape.area <= 0:
            return
        distance = polygon_shape.area * (
            1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
        subject = [tuple(l) for l in polygon]
        padding = pyclipper.PyclipperOffset()
        padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)

        padded_polygon = np.array(padding.Execute(distance)[0])
        cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)

        xmin = padded_polygon[:, 0].min()
        xmax = padded_polygon[:, 0].max()
        ymin = padded_polygon[:, 1].min()
        ymax = padded_polygon[:, 1].max()
        width = xmax - xmin + 1
        height = ymax - ymin + 1

        polygon[:, 0] = polygon[:, 0] - xmin
        polygon[:, 1] = polygon[:, 1] - ymin

        xs = np.broadcast_to(
            np.linspace(
                0, width - 1, num=width).reshape(1, width), (height, width))
        ys = np.broadcast_to(
            np.linspace(
                0, height - 1, num=height).reshape(height, 1), (height, width))

        distance_map = np.zeros(
            (polygon.shape[0], height, width), dtype=np.float32)
        for i in range(polygon.shape[0]):
            j = (i + 1) % polygon.shape[0]
            absolute_distance = self._distance(xs, ys, polygon[i], polygon[j])
            distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
        distance_map = distance_map.min(axis=0)

        xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
        xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
        ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
        ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
        canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
            1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
                             xmin_valid - xmin:xmax_valid - xmax + width],
            canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])

    def _distance(self, xs, ys, point_1, point_2):
        '''
        compute the distance from point to a line
        ys: coordinates in the first axis
        xs: coordinates in the second axis
        point_1, point_2: (x, y), the end of the line
        '''
        height, width = xs.shape[:2]
        square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - point_1[
            1])
        square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - point_2[
            1])
        square_distance = np.square(point_1[0] - point_2[0]) + np.square(
            point_1[1] - point_2[1])

        cosin = (square_distance - square_distance_1 - square_distance_2) / (
            2 * np.sqrt(square_distance_1 * square_distance_2))
        square_sin = 1 - np.square(cosin)
        square_sin = np.nan_to_num(square_sin)
        result = np.sqrt(square_distance_1 * square_distance_2 * square_sin /
                         square_distance)

        result[cosin <
               0] = np.sqrt(np.fmin(square_distance_1, square_distance_2))[cosin
                                                                           < 0]
        # self.extend_line(point_1, point_2, result)
        return result

    def extend_line(self, point_1, point_2, result, shrink_ratio):
        ex_point_1 = (int(
            round(point_1[0] + (point_1[0] - point_2[0]) * (1 + shrink_ratio))),
                      int(
                          round(point_1[1] + (point_1[1] - point_2[1]) * (
                              1 + shrink_ratio))))
        cv2.line(
            result,
            tuple(ex_point_1),
            tuple(point_1),
            4096.0,
            1,
            lineType=cv2.LINE_AA,
            shift=0)
        ex_point_2 = (int(
            round(point_2[0] + (point_2[0] - point_1[0]) * (1 + shrink_ratio))),
                      int(
                          round(point_2[1] + (point_2[1] - point_1[1]) * (
                              1 + shrink_ratio))))
        cv2.line(
            result,
            tuple(ex_point_2),
            tuple(point_2),
            4096.0,
            1,
            lineType=cv2.LINE_AA,
            shift=0)
        return ex_point_1, ex_point_2