predict_cls.py 5.75 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
import cv2
import copy
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
28
import traceback
WenmuZhou's avatar
WenmuZhou committed
29
30
31
32
33
34

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

WenmuZhou's avatar
WenmuZhou committed
35
36
logger = get_logger()

WenmuZhou's avatar
WenmuZhou committed
37
38
39
40

class TextClassifier(object):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
41
        self.cls_batch_num = args.cls_batch_num
WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
        self.cls_thresh = args.cls_thresh
        postprocess_params = {
            'name': 'ClsPostProcess',
            "label_list": args.label_list,
        }
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
48
        self.predictor, self.input_tensor, self.output_tensors, _ = \
WenmuZhou's avatar
WenmuZhou committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            utility.create_predictor(args, 'cls', logger)

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
85
        elapse = 0
WenmuZhou's avatar
WenmuZhou committed
86
        for beg_img_no in range(0, img_num, batch_num):
LDOUBLEV's avatar
LDOUBLEV committed
87

WenmuZhou's avatar
WenmuZhou committed
88
89
90
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
91
            starttime = time.time()
WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
96
97
98
99
100
101
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
LDOUBLEV's avatar
LDOUBLEV committed
102

WenmuZhou's avatar
WenmuZhou committed
103
104
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
WenmuZhou's avatar
WenmuZhou committed
105
            prob_out = self.output_tensors[0].copy_to_cpu()
WenmuZhou's avatar
fix mem  
WenmuZhou committed
106
            self.predictor.try_shrink_memory()
WenmuZhou's avatar
WenmuZhou committed
107
            cls_result = self.postprocess_op(prob_out)
108
            elapse += time.time() - starttime
WenmuZhou's avatar
WenmuZhou committed
109
110
            for rno in range(len(cls_result)):
                label, score = cls_result[rno]
WenmuZhou's avatar
WenmuZhou committed
111
112
113
114
                cls_res[indices[beg_img_no + rno]] = [label, score]
                if '180' in label and score > self.cls_thresh:
                    img_list[indices[beg_img_no + rno]] = cv2.rotate(
                        img_list[indices[beg_img_no + rno]], 1)
LDOUBLEV's avatar
LDOUBLEV committed
115
        elapse = time.time() - starttime
116
        return img_list, cls_res, elapse
WenmuZhou's avatar
WenmuZhou committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
WenmuZhou's avatar
WenmuZhou committed
134
        img_list, cls_res, predict_time = text_classifier(img_list)
WenmuZhou's avatar
WenmuZhou committed
135
136
    except:
        logger.info(traceback.format_exc())
WenmuZhou's avatar
WenmuZhou committed
137
138
139
140
141
142
143
144
        logger.info(
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
        exit()
    for ino in range(len(img_list)):
WenmuZhou's avatar
WenmuZhou committed
145
146
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               cls_res[ino]))
LDOUBLEV's avatar
LDOUBLEV committed
147
148
149
    logger.info(
        "The predict time about text angle classify module is as follows: ")
    text_classifier.cls_times.info(average=False)
WenmuZhou's avatar
WenmuZhou committed
150

WenmuZhou's avatar
WenmuZhou committed
151

WenmuZhou's avatar
WenmuZhou committed
152
153
if __name__ == "__main__":
    main(utility.parse_args())