combined_loss.py 2.24 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationDMLLoss
LDOUBLEV's avatar
LDOUBLEV committed
20
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


class CombinedLoss(nn.Layer):
    """
    CombinedLoss:
        a combionation of loss function
    """

    def __init__(self, loss_config_list=None):
        super().__init__()
        self.loss_func = []
        self.loss_weight = []
        assert isinstance(loss_config_list, list), (
            'operator config should be a list')
        for config in loss_config_list:
            assert isinstance(config,
                              dict) and len(config) == 1, "yaml format error"
            name = list(config)[0]
            param = config[name]
            assert "weight" in param, "weight must be in param, but param just contains {}".format(
                param.keys())
            self.loss_weight.append(param.pop("weight"))
            self.loss_func.append(eval(name)(**param))

    def forward(self, input, batch, **kargs):
        loss_dict = {}
LDOUBLEV's avatar
LDOUBLEV committed
47
        loss_all = 0.
littletomatodonkey's avatar
littletomatodonkey committed
48
49
50
51
52
        for idx, loss_func in enumerate(self.loss_func):
            loss = loss_func(input, batch, **kargs)
            if isinstance(loss, paddle.Tensor):
                loss = {"loss_{}_{}".format(str(loss), idx): loss}
            weight = self.loss_weight[idx]
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
53
            for key in loss.keys():
LDOUBLEV's avatar
LDOUBLEV committed
54
55
                if key == "loss":
                    loss_all += loss[key] * weight
LDOUBLEV's avatar
LDOUBLEV committed
56
                else:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
57
                    loss_dict["{}_{}".format(key, idx)] = loss[key]
LDOUBLEV's avatar
LDOUBLEV committed
58
        loss_dict["loss"] = loss_all
littletomatodonkey's avatar
littletomatodonkey committed
59
        return loss_dict