__init__.py 2.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
WenmuZhou's avatar
WenmuZhou committed
14

dyning's avatar
dyning committed
15
import copy
littletomatodonkey's avatar
littletomatodonkey committed
16
17
import importlib

18
19
20
from paddle.jit import to_static
from paddle.static import InputSpec

littletomatodonkey's avatar
littletomatodonkey committed
21
22
from .base_model import BaseModel
from .distillation_model import DistillationModel
dyning's avatar
dyning committed
23

24
__all__ = ["build_model", "apply_to_static"]
dyning's avatar
dyning committed
25

littletomatodonkey's avatar
littletomatodonkey committed
26

dyning's avatar
dyning committed
27
28
def build_model(config):
    config = copy.deepcopy(config)
littletomatodonkey's avatar
littletomatodonkey committed
29
30
31
32
33
34
35
    if not "name" in config:
        arch = BaseModel(config)
    else:
        name = config.pop("name")
        mod = importlib.import_module(__name__)
        arch = getattr(mod, name)(config)
    return arch
36
37
38
39
40
41
42


def apply_to_static(model, config, logger):
    if config["Global"].get("to_static", False) is not True:
        return model
    assert "image_shape" in config[
        "Global"], "image_shape must be assigned for static training mode..."
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    supported_list = ["DB", "SVTR"]
    if config["Architecture"]["algorithm"] in ["Distillation"]:
        algo = list(config["Architecture"]["Models"].values())[0]["algorithm"]
    else:
        algo = config["Architecture"]["algorithm"]
    assert algo in supported_list, f"algorithms that supports static training must in in {supported_list} but got {algo}"

    specs = [
        InputSpec(
            [None] + config["Global"]["image_shape"], dtype='float32')
    ]

    if algo == "SVTR":
        specs.append([
            InputSpec(
                [None, config["Global"]["max_text_length"]],
                dtype='int64'), InputSpec(
                    [None, config["Global"]["max_text_length"]], dtype='int64'),
            InputSpec(
                [None], dtype='int64'), InputSpec(
                    [None], dtype='float64')
        ])
65
66
67
68

    model = to_static(model, input_spec=specs)
    logger.info("Successfully to apply @to_static with specs: {}".format(specs))
    return model