rec_sar_head.py 12.9 KB
Newer Older
andyjpaddle's avatar
andyjpaddle committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F


class SAREncoder(nn.Layer):
    """
    Args:
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
        enc_gru (bool): If True, use GRU, else LSTM in encoder.
        d_model (int): Dim of channels from backbone.
        d_enc (int): Dim of encoder RNN layer.
        mask (bool): If True, mask padding in RNN sequence.
    """
andyjpaddle's avatar
andyjpaddle committed
22

andyjpaddle's avatar
andyjpaddle committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    def __init__(self,
                 enc_bi_rnn=False,
                 enc_drop_rnn=0.1,
                 enc_gru=False,
                 d_model=512,
                 d_enc=512,
                 mask=True,
                 **kwargs):
        super().__init__()
        assert isinstance(enc_bi_rnn, bool)
        assert isinstance(enc_drop_rnn, (int, float))
        assert 0 <= enc_drop_rnn < 1.0
        assert isinstance(enc_gru, bool)
        assert isinstance(d_model, int)
        assert isinstance(d_enc, int)
        assert isinstance(mask, bool)

        self.enc_bi_rnn = enc_bi_rnn
        self.enc_drop_rnn = enc_drop_rnn
        self.mask = mask

        # LSTM Encoder
        if enc_bi_rnn:
            direction = 'bidirectional'
        else:
            direction = 'forward'
        kwargs = dict(
            input_size=d_model,
            hidden_size=d_enc,
            num_layers=2,
            time_major=False,
            dropout=enc_drop_rnn,
andyjpaddle's avatar
andyjpaddle committed
55
            direction=direction)
andyjpaddle's avatar
andyjpaddle committed
56
57
58
59
        if enc_gru:
            self.rnn_encoder = nn.GRU(**kwargs)
        else:
            self.rnn_encoder = nn.LSTM(**kwargs)
andyjpaddle's avatar
andyjpaddle committed
60

andyjpaddle's avatar
andyjpaddle committed
61
62
63
        # global feature transformation
        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
andyjpaddle's avatar
andyjpaddle committed
64

andyjpaddle's avatar
andyjpaddle committed
65
66
67
    def forward(self, feat, img_metas=None):
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]
andyjpaddle's avatar
andyjpaddle committed
68

andyjpaddle's avatar
andyjpaddle committed
69
70
71
        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1]
andyjpaddle's avatar
andyjpaddle committed
72
73

        h_feat = feat.shape[2]  # bsz c h w
andyjpaddle's avatar
andyjpaddle committed
74
        feat_v = F.max_pool2d(
andyjpaddle's avatar
andyjpaddle committed
75
76
77
78
79
            feat, kernel_size=(h_feat, 1), stride=1, padding=0)
        feat_v = feat_v.squeeze(2)  # bsz * C * W
        feat_v = paddle.transpose(feat_v, perm=[0, 2, 1])  # bsz * W * C
        holistic_feat = self.rnn_encoder(feat_v)[0]  # bsz * T * C

andyjpaddle's avatar
andyjpaddle committed
80
81
82
83
84
85
86
87
        if valid_ratios is not None:
            valid_hf = []
            T = holistic_feat.shape[1]
            for i, valid_ratio in enumerate(valid_ratios):
                valid_step = min(T, math.ceil(T * valid_ratio)) - 1
                valid_hf.append(holistic_feat[i, valid_step, :])
            valid_hf = paddle.stack(valid_hf, axis=0)
        else:
andyjpaddle's avatar
andyjpaddle committed
88
89
90
            valid_hf = holistic_feat[:, -1, :]  # bsz * C
        holistic_feat = self.linear(valid_hf)  # bsz * C

andyjpaddle's avatar
andyjpaddle committed
91
        return holistic_feat
andyjpaddle's avatar
andyjpaddle committed
92

andyjpaddle's avatar
andyjpaddle committed
93
94
95
96
97
98
99
100
101
102
103

class BaseDecoder(nn.Layer):
    def __init__(self, **kwargs):
        super().__init__()

    def forward_train(self, feat, out_enc, targets, img_metas):
        raise NotImplementedError

    def forward_test(self, feat, out_enc, img_metas):
        raise NotImplementedError

andyjpaddle's avatar
andyjpaddle committed
104
    def forward(self,
andyjpaddle's avatar
andyjpaddle committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
                feat,
                out_enc,
                label=None,
                img_metas=None,
                train_mode=True):
        self.train_mode = train_mode

        if train_mode:
            return self.forward_train(feat, out_enc, label, img_metas)
        return self.forward_test(feat, out_enc, img_metas)


class ParallelSARDecoder(BaseDecoder):
    """
    Args:
andyjpaddle's avatar
andyjpaddle committed
120
        out_channels (int): Output class number.
andyjpaddle's avatar
andyjpaddle committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
        dec_drop_rnn (float): Dropout of RNN layer in decoder.
        dec_gru (bool): If True, use GRU, else LSTM in decoder.
        d_model (int): Dim of channels from backbone.
        d_enc (int): Dim of encoder RNN layer.
        d_k (int): Dim of channels of attention module.
        pred_dropout (float): Dropout probability of prediction layer.
        max_seq_len (int): Maximum sequence length for decoding.
        mask (bool): If True, mask padding in feature map.
        start_idx (int): Index of start token.
        padding_idx (int): Index of padding token.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state.
    """

andyjpaddle's avatar
andyjpaddle committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def __init__(
            self,
            out_channels,  # 90 + unknown + start + padding
            enc_bi_rnn=False,
            dec_bi_rnn=False,
            dec_drop_rnn=0.0,
            dec_gru=False,
            d_model=512,
            d_enc=512,
            d_k=64,
            pred_dropout=0.1,
            max_text_length=30,
            mask=True,
            pred_concat=True,
            **kwargs):
andyjpaddle's avatar
andyjpaddle committed
152
153
        super().__init__()

andyjpaddle's avatar
andyjpaddle committed
154
        self.num_classes = out_channels
andyjpaddle's avatar
andyjpaddle committed
155
156
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
andyjpaddle's avatar
andyjpaddle committed
157
        self.start_idx = out_channels - 2
andyjpaddle's avatar
andyjpaddle committed
158
        self.padding_idx = out_channels - 1
andyjpaddle's avatar
andyjpaddle committed
159
160
161
162
163
164
165
166
167
        self.max_seq_len = max_text_length
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)

        # 2D attention layer
        self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
andyjpaddle's avatar
andyjpaddle committed
168
169
        self.conv3x3_1 = nn.Conv2D(
            d_model, d_k, kernel_size=3, stride=1, padding=1)
andyjpaddle's avatar
andyjpaddle committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        self.conv1x1_2 = nn.Linear(d_k, 1)

        # Decoder RNN layer
        if dec_bi_rnn:
            direction = 'bidirectional'
        else:
            direction = 'forward'

        kwargs = dict(
            input_size=encoder_rnn_out_size,
            hidden_size=encoder_rnn_out_size,
            num_layers=2,
            time_major=False,
            dropout=dec_drop_rnn,
andyjpaddle's avatar
andyjpaddle committed
184
            direction=direction)
andyjpaddle's avatar
andyjpaddle committed
185
186
187
188
189
190
191
        if dec_gru:
            self.rnn_decoder = nn.GRU(**kwargs)
        else:
            self.rnn_decoder = nn.LSTM(**kwargs)

        # Decoder input embedding
        self.embedding = nn.Embedding(
andyjpaddle's avatar
andyjpaddle committed
192
193
194
195
            self.num_classes,
            encoder_rnn_out_size,
            padding_idx=self.padding_idx)

andyjpaddle's avatar
andyjpaddle committed
196
197
        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
andyjpaddle's avatar
andyjpaddle committed
198
        pred_num_classes = self.num_classes - 1
andyjpaddle's avatar
andyjpaddle committed
199
200
201
202
203
204
205
206
207
208
209
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + d_enc
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, pred_num_classes)

    def _2d_attention(self,
                      decoder_input,
                      feat,
                      holistic_feat,
                      valid_ratios=None):
andyjpaddle's avatar
andyjpaddle committed
210

andyjpaddle's avatar
andyjpaddle committed
211
212
        y = self.rnn_decoder(decoder_input)[0]
        # y: bsz * (seq_len + 1) * hidden_size
andyjpaddle's avatar
andyjpaddle committed
213
214

        attn_query = self.conv1x1_1(y)  # bsz * (seq_len + 1) * attn_size
andyjpaddle's avatar
andyjpaddle committed
215
216
217
218
219
220
221
222
223
224
        bsz, seq_len, attn_size = attn_query.shape
        attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
        # (bsz, seq_len + 1, attn_size, 1, 1)

        attn_key = self.conv3x3_1(feat)
        # bsz * attn_size * h * w
        attn_key = attn_key.unsqueeze(1)
        # bsz * 1 * attn_size * h * w

        attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
andyjpaddle's avatar
andyjpaddle committed
225

andyjpaddle's avatar
andyjpaddle committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        # bsz * (seq_len + 1) * attn_size * h * w
        attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
        # bsz * (seq_len + 1) * h * w * attn_size
        attn_weight = self.conv1x1_2(attn_weight)
        # bsz * (seq_len + 1) * h * w * 1
        bsz, T, h, w, c = attn_weight.shape
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_weight[i, :, :, valid_width:, :] = float('-inf')

        attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
        attn_weight = F.softmax(attn_weight, axis=-1)
andyjpaddle's avatar
andyjpaddle committed
242

andyjpaddle's avatar
andyjpaddle committed
243
244
245
246
        attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
        attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
        # attn_weight: bsz * T * c * h * w
        # feat: bsz * c * h * w
andyjpaddle's avatar
andyjpaddle committed
247
248
249
        attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight),
                               (3, 4),
                               keepdim=False)
andyjpaddle's avatar
andyjpaddle committed
250
251
252
253
254
        # bsz * (seq_len + 1) * C

        # Linear transformation
        if self.pred_concat:
            hf_c = holistic_feat.shape[-1]
andyjpaddle's avatar
andyjpaddle committed
255
256
            holistic_feat = paddle.expand(
                holistic_feat, shape=[bsz, seq_len, hf_c])
andyjpaddle's avatar
andyjpaddle committed
257
258
259
260
261
262
            y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
        else:
            y = self.prediction(attn_feat)
        # bsz * (seq_len + 1) * num_classes
        if self.train_mode:
            y = self.pred_dropout(y)
andyjpaddle's avatar
andyjpaddle committed
263

andyjpaddle's avatar
andyjpaddle committed
264
265
266
267
268
269
270
271
272
273
274
275
        return y

    def forward_train(self, feat, out_enc, label, img_metas):
        '''
        img_metas: [label, valid_ratio]
        '''
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]

        valid_ratios = None
        if img_metas is not None and self.mask:
            valid_ratios = img_metas[-1]
andyjpaddle's avatar
andyjpaddle committed
276

andyjpaddle's avatar
andyjpaddle committed
277
278
279
280
281
282
283
284
        label = label.cuda()
        lab_embedding = self.embedding(label)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
        # bsz * (seq_len + 1) * C
        out_dec = self._2d_attention(
andyjpaddle's avatar
andyjpaddle committed
285
            in_dec, feat, out_enc, valid_ratios=valid_ratios)
andyjpaddle's avatar
andyjpaddle committed
286
        # bsz * (seq_len + 1) * num_classes
andyjpaddle's avatar
andyjpaddle committed
287
288

        return out_dec[:, 1:, :]  # bsz * seq_len * num_classes
andyjpaddle's avatar
andyjpaddle committed
289
290
291
292
293
294
295

    def forward_test(self, feat, out_enc, img_metas):
        if img_metas is not None:
            assert len(img_metas[0]) == feat.shape[0]

        valid_ratios = None
        if img_metas is not None and self.mask:
andyjpaddle's avatar
andyjpaddle committed
296
297
            valid_ratios = img_metas[-1]

andyjpaddle's avatar
andyjpaddle committed
298
299
        seq_len = self.max_seq_len
        bsz = feat.shape[0]
andyjpaddle's avatar
andyjpaddle committed
300
301
        start_token = paddle.full(
            (bsz, ), fill_value=self.start_idx, dtype='int64')
andyjpaddle's avatar
andyjpaddle committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        # bsz
        start_token = self.embedding(start_token)
        # bsz * emb_dim
        emb_dim = start_token.shape[1]
        start_token = start_token.unsqueeze(1)
        start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        decoder_input = paddle.concat((out_enc, start_token), axis=1)
        # bsz * (seq_len + 1) * emb_dim

        outputs = []
        for i in range(1, seq_len + 1):
            decoder_output = self._2d_attention(
andyjpaddle's avatar
andyjpaddle committed
317
318
                decoder_input, feat, out_enc, valid_ratios=valid_ratios)
            char_output = decoder_output[:, i, :]  # bsz * num_classes
andyjpaddle's avatar
andyjpaddle committed
319
320
321
            char_output = F.softmax(char_output, -1)
            outputs.append(char_output)
            max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
andyjpaddle's avatar
andyjpaddle committed
322
            char_embedding = self.embedding(max_idx)  # bsz * emb_dim
andyjpaddle's avatar
andyjpaddle committed
323
324
            if i < seq_len:
                decoder_input[:, i + 1, :] = char_embedding
andyjpaddle's avatar
andyjpaddle committed
325
326

        outputs = paddle.stack(outputs, 1)  # bsz * seq_len * num_classes
andyjpaddle's avatar
andyjpaddle committed
327
328
329
330
331

        return outputs


class SARHead(nn.Layer):
andyjpaddle's avatar
andyjpaddle committed
332
333
334
335
336
337
338
339
340
341
342
343
344
    def __init__(self,
                 out_channels,
                 enc_bi_rnn=False,
                 enc_drop_rnn=0.1,
                 enc_gru=False,
                 dec_bi_rnn=False,
                 dec_drop_rnn=0.0,
                 dec_gru=False,
                 d_k=512,
                 pred_dropout=0.1,
                 max_text_length=30,
                 pred_concat=True,
                 **kwargs):
andyjpaddle's avatar
andyjpaddle committed
345
346
347
348
        super(SARHead, self).__init__()

        # encoder module
        self.encoder = SAREncoder(
andyjpaddle's avatar
andyjpaddle committed
349
            enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru)
andyjpaddle's avatar
andyjpaddle committed
350
351
352

        # decoder module
        self.decoder = ParallelSARDecoder(
andyjpaddle's avatar
andyjpaddle committed
353
            out_channels=out_channels,
andyjpaddle's avatar
andyjpaddle committed
354
            enc_bi_rnn=enc_bi_rnn,
andyjpaddle's avatar
andyjpaddle committed
355
356
357
358
359
360
            dec_bi_rnn=dec_bi_rnn,
            dec_drop_rnn=dec_drop_rnn,
            dec_gru=dec_gru,
            d_k=d_k,
            pred_dropout=pred_dropout,
            max_text_length=max_text_length,
andyjpaddle's avatar
andyjpaddle committed
361
362
            pred_concat=pred_concat)

andyjpaddle's avatar
andyjpaddle committed
363
364
365
366
    def forward(self, feat, targets=None):
        '''
        img_metas: [label, valid_ratio]
        '''
andyjpaddle's avatar
andyjpaddle committed
367
368
        holistic_feat = self.encoder(feat, targets)  # bsz c

andyjpaddle's avatar
andyjpaddle committed
369
        if self.training:
andyjpaddle's avatar
andyjpaddle committed
370
            label = targets[0]  # label
andyjpaddle's avatar
andyjpaddle committed
371
            label = paddle.to_tensor(label, dtype='int64')
andyjpaddle's avatar
andyjpaddle committed
372
373
            final_out = self.decoder(
                feat, holistic_feat, label, img_metas=targets)
andyjpaddle's avatar
andyjpaddle committed
374
        if not self.training:
andyjpaddle's avatar
andyjpaddle committed
375
376
377
378
379
380
            final_out = self.decoder(
                feat,
                holistic_feat,
                label=None,
                img_metas=targets,
                train_mode=False)
andyjpaddle's avatar
andyjpaddle committed
381
            # (bsz, seq_len, num_classes)
andyjpaddle's avatar
andyjpaddle committed
382

andyjpaddle's avatar
andyjpaddle committed
383
        return final_out