detection_en.md 16.7 KB
Newer Older
1
# Text Detection
LDOUBLEV's avatar
LDOUBLEV committed
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
LDOUBLEV's avatar
LDOUBLEV committed
4

5
6
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
  * [1.1 Data Preparation](#11-data-preparation)
fanruinet's avatar
fanruinet committed
7
  * [1.2 Download Pre-trained Model](#12-download-pretrained-model)
8
9
10
11
- [2. Training](#2-training)
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
andyjpaddle's avatar
andyjpaddle committed
12
13
14
15
  * [2.4 Mixed Precision Training](#24-amp-training)
  * [2.5 Distributed Training](#25-distributed-training)
  * [2.6 Training with knowledge distillation](#26)
  * [2.7 Training on other platform(Windows/macOS/Linux DCU)](#27)
16
17
18
19
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
andyjpaddle's avatar
andyjpaddle committed
20
- [5. FAQ](#5-faq)
Khanh Tran's avatar
Khanh Tran committed
21

22
## 1. Data and Weights Preparation
Khanh Tran's avatar
Khanh Tran committed
23

24
### 1.1 Data Preparation
LDOUBLEV's avatar
LDOUBLEV committed
25
26

The icdar2015 dataset contains train set which has 1000 images obtained with wearable cameras and test set which has 500 images obtained with wearable cameras. The icdar2015 can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
Khanh Tran's avatar
Khanh Tran committed
27

LDOUBLEV's avatar
LDOUBLEV committed
28
29
30
31

After registering and logging in, download the part marked in the red box in the figure below. And, the content downloaded by `Training Set Images` should be saved as the folder `icdar_c4_train_imgs`, and the content downloaded by `Test Set Images` is saved as the folder `ch4_test_images`

<p align="center">
LDOUBLEV's avatar
LDOUBLEV committed
32
 <img src="../datasets/ic15_location_download.png" align="middle" width = "700"/>
LDOUBLEV's avatar
LDOUBLEV committed
33
34
<p align="center">

Khanh Tran's avatar
Khanh Tran committed
35
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
licx's avatar
licx committed
36
```shell
Khanh Tran's avatar
Khanh Tran committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Under the PaddleOCR path
cd PaddleOCR/
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_label.txt
```

After decompressing the data set and downloading the annotation file, PaddleOCR/train_data/ has two folders and two files, which are:
```
/PaddleOCR/train_data/icdar2015/text_localization/
  └─ icdar_c4_train_imgs/         Training data of icdar dataset
  └─ ch4_test_images/             Testing data of icdar dataset
  └─ train_icdar2015_label.txt    Training annotation of icdar dataset
  └─ test_icdar2015_label.txt     Test annotation of icdar dataset
```

fanruinet's avatar
fanruinet committed
52
The provided annotation file format is as follow, separated by "\t":
Khanh Tran's avatar
Khanh Tran committed
53
54
```
" Image file name             Image annotation information encoded by json.dumps"
LDOUBLEV's avatar
LDOUBLEV committed
55
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
Khanh Tran's avatar
Khanh Tran committed
56
```
WenmuZhou's avatar
WenmuZhou committed
57
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
Khanh Tran's avatar
Khanh Tran committed
58

licx's avatar
licx committed
59
60
61
62
63
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**

If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
Khanh Tran's avatar
Khanh Tran committed
64
65


fanruinet's avatar
fanruinet committed
66
### 1.2 Download Pre-trained Model
67

fanruinet's avatar
fanruinet committed
68
69
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
Khanh Tran's avatar
Khanh Tran committed
70

licx's avatar
licx committed
71
```shell
Khanh Tran's avatar
Khanh Tran committed
72
73
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
74
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
75
# or, download the pre-trained model of ResNet18_vd
tink2123's avatar
tink2123 committed
76
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
77
# or, download the pre-trained model of ResNet50_vd
tink2123's avatar
tink2123 committed
78
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
79

80
```
Khanh Tran's avatar
Khanh Tran committed
81

Leif's avatar
Leif committed
82
## 2. Training
83
84
85

### 2.1 Start Training

MissPenguin's avatar
MissPenguin committed
86
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
licx's avatar
licx committed
87
```shell
88
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
Leif's avatar
Leif committed
89
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
Khanh Tran's avatar
Khanh Tran committed
90
91
```

MissPenguin's avatar
MissPenguin committed
92
93
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
Khanh Tran's avatar
Khanh Tran committed
94

95
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
licx's avatar
licx committed
96
```shell
LDOUBLEV's avatar
update  
LDOUBLEV committed
97
# single GPU training
98
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
Leif's avatar
Leif committed
99
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
100
         Optimizer.base_lr=0.0001
LDOUBLEV's avatar
update  
LDOUBLEV committed
101
102

# multi-GPU training
103
# Set the GPU ID used by the '--gpus' parameter.
Leif's avatar
Leif committed
104
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
stephon's avatar
stephon committed
105

Bin Lu's avatar
Bin Lu committed
106
# multi-Node, multi-GPU training
Bin Lu's avatar
Bin Lu committed
107
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
stephon's avatar
stephon committed
108
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
Bin Lu's avatar
Bin Lu committed
109
110
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
stephon's avatar
stephon committed
111
112
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

Bin Lu's avatar
Bin Lu committed
113
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
Bin Lu's avatar
Bin Lu committed
114
115
116
117
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
Khanh Tran's avatar
Khanh Tran committed
118
119
```

120
### 2.2 Load Trained Model and Continue Training
121
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
122
123

For example:
licx's avatar
licx committed
124
```shell
LDOUBLEV's avatar
LDOUBLEV committed
125
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
LDOUBLEV's avatar
LDOUBLEV committed
126
127
```

Leif's avatar
Leif committed
128
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
129
130


131
### 2.3 Training with New Backbone
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

andyjpaddle's avatar
andyjpaddle committed
181
### 2.4 Mixed Precision Training
182

andyjpaddle's avatar
andyjpaddle committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
If you want to speed up your training further, you can use [Auto Mixed Precision Training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), taking a single machine and a single gpu as an example, the commands are as follows:

```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
 ```

### 2.5 Distributed Training

During multi-machine multi-gpu training, use the `--ips` parameter to set the used machine IP address, and the `--gpus` parameter to set the used GPU ID:

```bash
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```

**Note:** When using multi-machine and multi-gpu training, you need to replace the ips value in the above command with the address of your machine, and the machines need to be able to ping each other. In addition, training needs to be launched separately on multiple machines. The command to view the ip address of the machine is `ifconfig`.

### 2.6 Training with knowledge distillation
203
204
205

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

andyjpaddle's avatar
andyjpaddle committed
206
207
208
209
210
211
212
213
214
215
216
217
218
### 2.7 Training on other platform(Windows/macOS/Linux DCU

- Windows GPU/CPU
The Windows platform is slightly different from the Linux platform:
Windows platform only supports `single gpu` training and inference, specify GPU for training `set CUDA_VISIBLE_DEVICES=0`
On the Windows platform, DataLoader only supports single-process mode, so you need to set `num_workers` to 0;

- macOS
GPU mode is not supported, you need to set `use_gpu` to False in the configuration file, and the rest of the training evaluation prediction commands are exactly the same as Linux GPU.

- Linux DCU
Running on a DCU device requires setting the environment variable `export HIP_VISIBLE_DEVICES=0,1,2,3`, and the rest of the training and evaluation prediction commands are exactly the same as the Linux GPU.

219
220
221
## 3. Evaluation and Test

### 3.1 Evaluation
Khanh Tran's avatar
Khanh Tran committed
222

223
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
Khanh Tran's avatar
Khanh Tran committed
224

LDOUBLEV's avatar
LDOUBLEV committed
225
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
Khanh Tran's avatar
Khanh Tran committed
226

227
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
Khanh Tran's avatar
Khanh Tran committed
228

LDOUBLEV's avatar
LDOUBLEV committed
229
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
licx's avatar
licx committed
230
```shell
LDOUBLEV's avatar
LDOUBLEV committed
231
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
Khanh Tran's avatar
Khanh Tran committed
232
233
```

234
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
Khanh Tran's avatar
Khanh Tran committed
235

236
### 3.2 Test
Khanh Tran's avatar
Khanh Tran committed
237
238

Test the detection result on a single image:
239
```shell
240
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
241
242
243
```

When testing the DB model, adjust the post-processing threshold:
244
```shell
245
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
Khanh Tran's avatar
Khanh Tran committed
246
247
248
249
```


Test the detection result on all images in the folder:
250
```shell
251
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
252
```
253

254
## 4. Inference
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

277
## 5. FAQ
278
279

Q1: The prediction results of trained model and inference model are inconsistent?
280

281
282
283
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).