rnn.py 2.99 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import nn

from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr


class Im2Seq(nn.Layer):
    def __init__(self, in_channels, **kwargs):
        super().__init__()
        self.out_channels = in_channels

    def forward(self, x):
        B, C, H, W = x.shape
WenmuZhou's avatar
WenmuZhou committed
31
32
        x = x.reshape((B, -1, W))
        x = x.transpose((0, 2, 1))  # (NTC)(batch, width, channels)
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        return x


class EncoderWithRNN(nn.Layer):
    def __init__(self, in_channels, hidden_size):
        super(EncoderWithRNN, self).__init__()
        self.out_channels = hidden_size * 2
        self.lstm = nn.LSTM(
            in_channels, hidden_size, direction='bidirectional', num_layers=2)

    def forward(self, x):
        x, _ = self.lstm(x)
        return x


class EncoderWithFC(nn.Layer):
    def __init__(self, in_channels, hidden_size):
        super(EncoderWithFC, self).__init__()
        self.out_channels = hidden_size
        weight_attr, bias_attr = get_para_bias_attr(
            l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
        self.fc = nn.Linear(
            in_channels,
            hidden_size,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            name='reduce_encoder_fea')

    def forward(self, x):
        x = self.fc(x)
        return x


class SequenceEncoder(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
67
    def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
68
        super(SequenceEncoder, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
69
        self.encoder_reshape = Im2Seq(in_channels)
WenmuZhou's avatar
WenmuZhou committed
70
71
72
73
74
        self.out_channels = self.encoder_reshape.out_channels
        if encoder_type == 'reshape':
            self.only_reshape = True
        else:
            support_encoder_dict = {
WenmuZhou's avatar
WenmuZhou committed
75
                'reshape': Im2Seq,
WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
                'fc': EncoderWithFC,
                'rnn': EncoderWithRNN
            }
            assert encoder_type in support_encoder_dict, '{} must in {}'.format(
                encoder_type, support_encoder_dict.keys())

            self.encoder = support_encoder_dict[encoder_type](
                self.encoder_reshape.out_channels, hidden_size)
            self.out_channels = self.encoder.out_channels
            self.only_reshape = False

    def forward(self, x):
        x = self.encoder_reshape(x)
        if not self.only_reshape:
            x = self.encoder(x)
        return x