detection_en.md 12.1 KB
Newer Older
1
# Text Detection
LDOUBLEV's avatar
LDOUBLEV committed
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
LDOUBLEV's avatar
LDOUBLEV committed
4

WenmuZhou's avatar
WenmuZhou committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
- [Text Detection](#text-detection)
  - [1. Data and Weights Preparation](#1-data-and-weights-preparation)
    - [1.1 Data Preparation](#11-data-preparation)
    - [1.2 Download Pre-trained Model](#12-download-pre-trained-model)
  - [2. Training](#2-training)
    - [2.1 Start Training](#21-start-training)
    - [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
    - [2.3 Training with New Backbone](#23-training-with-new-backbone)
    - [2.4 Training with knowledge distillation](#24-training-with-knowledge-distillation)
  - [3. Evaluation and Test](#3-evaluation-and-test)
    - [3.1 Evaluation](#31-evaluation)
    - [3.2 Test](#32-test)
  - [4. Inference](#4-inference)
  - [5. FAQ](#5-faq)
Khanh Tran's avatar
Khanh Tran committed
19

20
## 1. Data and Weights Preparation
Khanh Tran's avatar
Khanh Tran committed
21

22
### 1.1 Data Preparation
LDOUBLEV's avatar
LDOUBLEV committed
23

WenmuZhou's avatar
WenmuZhou committed
24
To prepare datasets, refer to [ocr_datasets](./dataset/ocr_datasets_en.md) .
Khanh Tran's avatar
Khanh Tran committed
25

fanruinet's avatar
fanruinet committed
26
### 1.2 Download Pre-trained Model
27

fanruinet's avatar
fanruinet committed
28
29
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
Khanh Tran's avatar
Khanh Tran committed
30

licx's avatar
licx committed
31
```shell
Khanh Tran's avatar
Khanh Tran committed
32
33
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
34
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
35
# or, download the pre-trained model of ResNet18_vd
tink2123's avatar
tink2123 committed
36
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
37
# or, download the pre-trained model of ResNet50_vd
tink2123's avatar
tink2123 committed
38
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
39

40
```
Khanh Tran's avatar
Khanh Tran committed
41

Leif's avatar
Leif committed
42
## 2. Training
43
44
45

### 2.1 Start Training

MissPenguin's avatar
MissPenguin committed
46
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
licx's avatar
licx committed
47
```shell
48
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
Leif's avatar
Leif committed
49
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
Khanh Tran's avatar
Khanh Tran committed
50
51
```

MissPenguin's avatar
MissPenguin committed
52
53
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
Khanh Tran's avatar
Khanh Tran committed
54

55
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
licx's avatar
licx committed
56
```shell
LDOUBLEV's avatar
update  
LDOUBLEV committed
57
# single GPU training
58
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
Leif's avatar
Leif committed
59
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
60
         Optimizer.base_lr=0.0001
LDOUBLEV's avatar
update  
LDOUBLEV committed
61
62

# multi-GPU training
63
# Set the GPU ID used by the '--gpus' parameter.
Leif's avatar
Leif committed
64
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
stephon's avatar
stephon committed
65

Bin Lu's avatar
Bin Lu committed
66
# multi-Node, multi-GPU training
Bin Lu's avatar
Bin Lu committed
67
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
stephon's avatar
stephon committed
68
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
Bin Lu's avatar
Bin Lu committed
69
70
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
stephon's avatar
stephon committed
71
72
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

Bin Lu's avatar
Bin Lu committed
73
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
Bin Lu's avatar
Bin Lu committed
74
75
76
77
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
Khanh Tran's avatar
Khanh Tran committed
78
79
```

80
### 2.2 Load Trained Model and Continue Training
81
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
82
83

For example:
licx's avatar
licx committed
84
```shell
LDOUBLEV's avatar
LDOUBLEV committed
85
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
LDOUBLEV's avatar
LDOUBLEV committed
86
87
```

Leif's avatar
Leif committed
88
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
89
90


91
### 2.3 Training with New Backbone
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

141
142
143
144
145

### 2.4 Training with knowledge distillation

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

146
147
148
## 3. Evaluation and Test

### 3.1 Evaluation
Khanh Tran's avatar
Khanh Tran committed
149

150
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
Khanh Tran's avatar
Khanh Tran committed
151

LDOUBLEV's avatar
LDOUBLEV committed
152
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
Khanh Tran's avatar
Khanh Tran committed
153

154
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
Khanh Tran's avatar
Khanh Tran committed
155

LDOUBLEV's avatar
LDOUBLEV committed
156
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
licx's avatar
licx committed
157
```shell
LDOUBLEV's avatar
LDOUBLEV committed
158
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
Khanh Tran's avatar
Khanh Tran committed
159
160
```

161
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
Khanh Tran's avatar
Khanh Tran committed
162

163
### 3.2 Test
Khanh Tran's avatar
Khanh Tran committed
164
165

Test the detection result on a single image:
166
```shell
167
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
168
169
170
```

When testing the DB model, adjust the post-processing threshold:
171
```shell
172
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
Khanh Tran's avatar
Khanh Tran committed
173
174
175
176
```


Test the detection result on all images in the folder:
177
```shell
178
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
179
```
180

181
## 4. Inference
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

204
## 5. FAQ
205
206

Q1: The prediction results of trained model and inference model are inconsistent?
207

208
209
210
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).