kie_en.md 2.59 KB
Newer Older
RangeKing's avatar
RangeKing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19


# Key Information Extraction(KIE)

This section provides a tutorial example on how to quickly use, train, and evaluate a key information extraction(KIE) model, [SDMGR](https://arxiv.org/abs/2103.14470), in PaddleOCR.

[SDMGR(Spatial Dual-Modality Graph Reasoning)](https://arxiv.org/abs/2103.14470) is a KIE algorithm that classifies each detected text region into predefined categories, such as order ID, invoice number, amount, and etc.


* [1. Quick Use](#1-----)
* [2. Model Training](#2-----)
* [3. Model Evaluation](#3-----)

<a name="1-----"></a>

## 1. Quick Use

[Wildreceipt dataset](https://paperswithcode.com/dataset/wildreceipt) is used for this tutorial. It contains 1765 photos, with 25 classes, and 50000 text boxes, which can be downloaded by wget:

RangeKing's avatar
RangeKing committed
20
```shell
RangeKing's avatar
RangeKing committed
21
22
23
24
25
wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/wildreceipt.tar && tar xf wildreceipt.tar
```

Download the pretrained model and predict the result:

RangeKing's avatar
RangeKing committed
26
```shell
RangeKing's avatar
RangeKing committed
27
28
29
30
31
cd PaddleOCR/
wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar && tar xf kie_vgg16.tar
python3.7 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy  Global.infer_img=../wildreceipt/1.txt
```

RangeKing's avatar
RangeKing committed
32
The prediction result is saved as `./output/sdmgr_kie/predicts_kie.txt`, and the visualization results are saved in the folder`/output/sdmgr_kie/kie_results/`.
RangeKing's avatar
RangeKing committed
33

RangeKing's avatar
RangeKing committed
34
The visualization results are shown in the figure below:
RangeKing's avatar
RangeKing committed
35
36
37
38
39
40
41
42
43

<div align="center">
    <img src="./imgs/0.png" width="800">
</div>

<a name="2-----"></a>
## 2. Model Training

Create a softlink to the folder, `PaddleOCR/train_data`:
RangeKing's avatar
RangeKing committed
44
```shell
RangeKing's avatar
RangeKing committed
45
46
47
48
49
50
cd PaddleOCR/ && mkdir train_data && cd train_data

ln -s ../../wildreceipt ./
```

The configuration file used for training is `configs/kie/kie_unet_sdmgr.yml`. The default training data path in the configuration file is `train_data/wildreceipt`. After preparing the data, you can execute the model training with the following command:
RangeKing's avatar
RangeKing committed
51
```shell
RangeKing's avatar
RangeKing committed
52
53
54
55
56
57
58
59
python3.7 tools/train.py -c configs/kie/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/
```
<a name="3-----"></a>

## 3. Model Evaluation

After training, you can execute the model evaluation with the following command:

RangeKing's avatar
RangeKing committed
60
```shell
RangeKing's avatar
RangeKing committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
python3.7 tools/eval.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy
```

**Reference:**

<!-- [ALGORITHM] -->

```bibtex
@misc{sun2021spatial,
      title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
      author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang},
      year={2021},
      eprint={2103.14470},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```