infer_ser.py 10.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy

import paddle

# relative reference
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31
32
33
34
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification

MODELS = {
    'LayoutXLM':
    (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
    'LayoutLM':
    (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}
littletomatodonkey's avatar
littletomatodonkey committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


def pad_sentences(tokenizer,
                  encoded_inputs,
                  max_seq_len=512,
                  pad_to_max_seq_len=True,
                  return_attention_mask=True,
                  return_token_type_ids=True,
                  return_overflowing_tokens=False,
                  return_special_tokens_mask=False):
    # Padding with larger size, reshape is carried out
    max_seq_len = (
        len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len

    needs_to_be_padded = pad_to_max_seq_len and \
                         max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len

    if needs_to_be_padded:
        difference = max_seq_len - len(encoded_inputs["input_ids"])
        if tokenizer.padding_side == 'right':
            if return_attention_mask:
                encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                    "input_ids"]) + [0] * difference
            if return_token_type_ids:
                encoded_inputs["token_type_ids"] = (
                    encoded_inputs["token_type_ids"] +
                    [tokenizer.pad_token_type_id] * difference)
            if return_special_tokens_mask:
                encoded_inputs["special_tokens_mask"] = encoded_inputs[
                    "special_tokens_mask"] + [1] * difference
            encoded_inputs["input_ids"] = encoded_inputs[
                "input_ids"] + [tokenizer.pad_token_id] * difference
            encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
                                                               ] * difference
        else:
WenmuZhou's avatar
WenmuZhou committed
70
71
            assert False, "padding_side of tokenizer just supports [\"right\"] but got {}".format(
                tokenizer.padding_side)
littletomatodonkey's avatar
littletomatodonkey committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    else:
        if return_attention_mask:
            encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                "input_ids"])

    return encoded_inputs


def split_page(encoded_inputs, max_seq_len=512):
    """
    truncate is often used in training process
    """
    for key in encoded_inputs:
        encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
        if encoded_inputs[key].ndim <= 1:  # for input_ids, att_mask and so on
            encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
        else:  # for bbox
            encoded_inputs[key] = encoded_inputs[key].reshape(
                [-1, max_seq_len, 4])
    return encoded_inputs


def preprocess(
        tokenizer,
        ori_img,
        ocr_info,
        img_size=(224, 224),
        pad_token_label_id=-100,
        max_seq_len=512,
        add_special_ids=False,
        return_attention_mask=True, ):
    ocr_info = deepcopy(ocr_info)
    height = ori_img.shape[0]
    width = ori_img.shape[1]

    img = cv2.resize(ori_img,
                     (224, 224)).transpose([2, 0, 1]).astype(np.float32)

    segment_offset_id = []
    words_list = []
    bbox_list = []
    input_ids_list = []
    token_type_ids_list = []

    for info in ocr_info:
        # x1, y1, x2, y2
        bbox = info["bbox"]
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)

        text = info["text"]
        encode_res = tokenizer.encode(
            text, pad_to_max_seq_len=False, return_attention_mask=True)

        if not add_special_ids:
            # TODO: use tok.all_special_ids to remove
            encode_res["input_ids"] = encode_res["input_ids"][1:-1]
            encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
            encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]

        input_ids_list.extend(encode_res["input_ids"])
        token_type_ids_list.extend(encode_res["token_type_ids"])
        bbox_list.extend([bbox] * len(encode_res["input_ids"]))
        words_list.append(text)
        segment_offset_id.append(len(input_ids_list))

    encoded_inputs = {
        "input_ids": input_ids_list,
        "token_type_ids": token_type_ids_list,
        "bbox": bbox_list,
        "attention_mask": [1] * len(input_ids_list),
    }

    encoded_inputs = pad_sentences(
        tokenizer,
        encoded_inputs,
        max_seq_len=max_seq_len,
        return_attention_mask=return_attention_mask)

    encoded_inputs = split_page(encoded_inputs)

    fake_bs = encoded_inputs["input_ids"].shape[0]

    encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
        [fake_bs] + list(img.shape))

    encoded_inputs["segment_offset_id"] = segment_offset_id

    return encoded_inputs


def postprocess(attention_mask, preds, label_map_path):
    if isinstance(preds, paddle.Tensor):
        preds = preds.numpy()
    preds = np.argmax(preds, axis=2)

    _, label_map = get_bio_label_maps(label_map_path)

    preds_list = [[] for _ in range(preds.shape[0])]

    # keep batch info
    for i in range(preds.shape[0]):
        for j in range(preds.shape[1]):
            if attention_mask[i][j] == 1:
                preds_list[i].append(label_map[preds[i][j]])

    return preds_list


def merge_preds_list_with_ocr_info(label_map_path, ocr_info, segment_offset_id,
                                   preds_list):
    # must ensure the preds_list is generated from the same image
    preds = [p for pred in preds_list for p in pred]
    label2id_map, _ = get_bio_label_maps(label_map_path)
    for key in label2id_map:
        if key.startswith("I-"):
            label2id_map[key] = label2id_map["B" + key[1:]]

    id2label_map = dict()
    for key in label2id_map:
        val = label2id_map[key]
        if key == "O":
            id2label_map[val] = key
        if key.startswith("B-") or key.startswith("I-"):
            id2label_map[val] = key[2:]
        else:
            id2label_map[val] = key

    for idx in range(len(segment_offset_id)):
        if idx == 0:
            start_id = 0
        else:
            start_id = segment_offset_id[idx - 1]

        end_id = segment_offset_id[idx]

        curr_pred = preds[start_id:end_id]
        curr_pred = [label2id_map[p] for p in curr_pred]

        if len(curr_pred) <= 0:
            pred_id = 0
        else:
            counts = np.bincount(curr_pred)
            pred_id = np.argmax(counts)
        ocr_info[idx]["pred_id"] = int(pred_id)
        ocr_info[idx]["pred"] = id2label_map[pred_id]
    return ocr_info


@paddle.no_grad()
def infer(args):
    os.makedirs(args.output_dir, exist_ok=True)

    # init token and model
WenmuZhou's avatar
WenmuZhou committed
228
229
230
231
    tokenizer_class, base_model_class, model_class = MODELS[args.ser_model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    model = model_class.from_pretrained(args.model_name_or_path)

littletomatodonkey's avatar
littletomatodonkey committed
232
233
234
235
    model.eval()

    # load ocr results json
    ocr_results = dict()
WenmuZhou's avatar
WenmuZhou committed
236
    with open(args.ocr_json_path, "r", encoding='utf-8') as fin:
littletomatodonkey's avatar
littletomatodonkey committed
237
238
239
240
241
242
243
244
245
        lines = fin.readlines()
        for line in lines:
            img_name, json_info = line.split("\t")
            ocr_results[os.path.basename(img_name)] = json.loads(json_info)

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
WenmuZhou's avatar
WenmuZhou committed
246
247
248
249
    with open(
            os.path.join(args.output_dir, "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey committed
250
        for idx, img_path in enumerate(infer_imgs):
WenmuZhou's avatar
WenmuZhou committed
251
252
253
254
            save_img_path = os.path.join(args.output_dir,
                                         os.path.basename(img_path))
            print("process: [{}/{}], save_result to {}".format(
                idx, len(infer_imgs), save_img_path))
littletomatodonkey's avatar
littletomatodonkey committed
255
256
257
258
259
260
261
262
263

            img = cv2.imread(img_path)

            ocr_info = ocr_results[os.path.basename(img_path)]["ocr_info"]
            inputs = preprocess(
                tokenizer=tokenizer,
                ori_img=img,
                ocr_info=ocr_info,
                max_seq_len=args.max_seq_length)
WenmuZhou's avatar
WenmuZhou committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
            if args.ser_model_type == 'LayoutLM':
                preds = model(
                    input_ids=inputs["input_ids"],
                    bbox=inputs["bbox"],
                    token_type_ids=inputs["token_type_ids"],
                    attention_mask=inputs["attention_mask"])
            elif args.ser_model_type == 'LayoutXLM':
                preds = model(
                    input_ids=inputs["input_ids"],
                    bbox=inputs["bbox"],
                    image=inputs["image"],
                    token_type_ids=inputs["token_type_ids"],
                    attention_mask=inputs["attention_mask"])
                preds = preds[0]
littletomatodonkey's avatar
littletomatodonkey committed
278
279
280
281
282
283
284
285
286
287
288
289
290

            preds = postprocess(inputs["attention_mask"], preds,
                                args.label_map_path)
            ocr_info = merge_preds_list_with_ocr_info(
                args.label_map_path, ocr_info, inputs["segment_offset_id"],
                preds)

            fout.write(img_path + "\t" + json.dumps(
                {
                    "ocr_info": ocr_info,
                }, ensure_ascii=False) + "\n")

            img_res = draw_ser_results(img, ocr_info)
WenmuZhou's avatar
WenmuZhou committed
291
            cv2.imwrite(save_img_path, img_res)
littletomatodonkey's avatar
littletomatodonkey committed
292
293
294
295
296
297
298

    return


if __name__ == "__main__":
    args = parse_args()
    infer(args)