"debug/backup_env.2.json" did not exist on "58c1b21033c1404113cfd62a3bec892122ee6890"
train_ser.py 11.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
import random
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args
from utils import get_bio_label_maps

logger = logging.getLogger(__name__)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    paddle.seed(args.seed)


def train(args):
    os.makedirs(args.output_dir, exist_ok=True)
    logging.basicConfig(
        filename=os.path.join(args.output_dir, "train.log")
        if paddle.distributed.get_rank() == 0 else None,
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if paddle.distributed.get_rank() == 0 else logging.WARN, )

    ch = logging.StreamHandler()
    ch.setLevel(logging.DEBUG)
    logger.addHandler(ch)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
    base_model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForTokenClassification(
        base_model, num_classes=len(label2id_map), dropout=None)

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)

    args.train_batch_size = args.per_gpu_train_batch_size * max(
        1, paddle.distributed.get_world_size())

    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed) = %d",
        args.train_batch_size * paddle.distributed.get_world_size(), )
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss = 0.0
    set_seed(args)
    best_metrics = None

    for epoch_id in range(args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
            model.train()
            outputs = model(**batch)
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs[0]
            loss = loss.mean()
            logger.info(
                "[epoch {}/{}][iter: {}/{}] lr: {:.5f}, train loss: {:.5f}, ".
                format(epoch_id, args.num_train_epochs, step,
                       len(train_dataloader),
                       lr_scheduler.get_lr(), loss.numpy()[0]))

            loss.backward()
            tr_loss += loss.item()
            optimizer.step()
            lr_scheduler.step()  # Update learning rate schedule
            optimizer.clear_grad()
            global_step += 1

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                # Only evaluate when single GPU otherwise metrics may not average well
                if paddle.distributed.get_rank(
                ) == 0 and args.evaluate_during_training:
                    results, _ = evaluate(
                        args,
                        model,
                        tokenizer,
                        label2id_map,
                        id2label_map,
                        pad_token_label_id, )

                    if best_metrics is None or results["f1"] >= best_metrics[
                            "f1"]:
                        best_metrics = copy.deepcopy(results)
                        output_dir = os.path.join(args.output_dir, "best_model")
                        os.makedirs(output_dir, exist_ok=True)
                        if paddle.distributed.get_rank() == 0:
                            model.save_pretrained(output_dir)
                            tokenizer.save_pretrained(output_dir)
                            paddle.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info("Saving model checkpoint to %s",
                                        output_dir)

                    logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
                        epoch_id, args.num_train_epochs, step,
                        len(train_dataloader), results))
                    if best_metrics is not None:
                        logger.info("best metrics: {}".format(best_metrics))

            if paddle.distributed.get_rank(
            ) == 0 and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir,
                                          "checkpoint-{}".format(global_step))
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

    return global_step, tr_loss / global_step


def evaluate(args,
             model,
             tokenizer,
             label2id_map,
             id2label_map,
             pad_token_label_id,
             prefix=""):
    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(
        1, paddle.distributed.get_world_size())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            tmp_eval_loss, logits = outputs[:2]

            tmp_eval_loss = tmp_eval_loss.mean()

            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))

            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.numpy()
            out_label_ids = batch["labels"].numpy()
        else:
            preds = np.append(preds, logits.numpy(), axis=0)
            out_label_ids = np.append(
                out_label_ids, batch["labels"].numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    # label_map = {i: label.upper() for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(id2label_map[out_label_ids[i][j]])
                preds_list[i].append(id2label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
    }

    with open(os.path.join(args.output_dir, "test_gt.txt"), "w") as fout:
        for lbl in out_label_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")
    with open(os.path.join(args.output_dir, "test_pred.txt"), "w") as fout:
        for lbl in preds_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")

    report = classification_report(out_label_list, preds_list)
    logger.info("\n" + report)

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

    return results, preds_list


def print_arguments(args):
    """print arguments"""
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    args = parse_args()
    print_arguments(args)
    train(args)