"src/vscode:/vscode.git/clone" did not exist on "12f78eec7f488003a74099d0fd5c8c271e09ac7b"
README.md 6.77 KB
Newer Older
grasswolfs's avatar
grasswolfs committed
1
English | [简体中文](README_ch.md)
WenmuZhou's avatar
WenmuZhou committed
2

3
4
5
6
7
8
9
10
11
12
13
14
15
- [1. Introduction](#1-introduction)
- [2. Update log](#2-update-log)
- [3. Features](#3-features)
- [4. Results](#4-results)
  - [4.1 Layout analysis and table recognition](#41-layout-analysis-and-table-recognition)
  - [4.2 DOC-VQA](#42-doc-vqa)
- [5. Quick start](#5-quick-start)
- [6. PP-Structure System](#6-pp-structure-system)
  - [6.1 Layout analysis and table recognition](#61-layout-analysis-and-table-recognition)
    - [6.1.1 Layout analysis](#611-layout-analysis)
    - [6.1.2 Table recognition](#612-table-recognition)
  - [6.2 DOC-VQA](#62-doc-vqa)
- [7. Model List](#7-model-list)
WenmuZhou's avatar
WenmuZhou committed
16
17
18
  - [7.1 Layout analysis model](#71-layout-analysis-model)
  - [7.2 OCR and table recognition model](#72-ocr-and-table-recognition-model)
  - [7.3 DOC-VQA model](#73-doc-vqa-model)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
19

WenmuZhou's avatar
update  
WenmuZhou committed
20
## 1. Introduction
21

WenmuZhou's avatar
update  
WenmuZhou committed
22
PP-Structure is an OCR toolkit that can be used for document analysis and processing with complex structures, designed to help developers better complete document understanding tasks
23

WenmuZhou's avatar
update  
WenmuZhou committed
24
## 2. Update log
WenmuZhou's avatar
WenmuZhou committed
25
* 2022.02.12 DOC-VQA add LayoutLMv2 model。
WenmuZhou's avatar
update  
WenmuZhou committed
26
* 2021.12.07 add [DOC-VQA SER and RE tasks](vqa/README.md)
grasswolfs's avatar
grasswolfs committed
27

WenmuZhou's avatar
update  
WenmuZhou committed
28
## 3. Features
29

WenmuZhou's avatar
update  
WenmuZhou committed
30
The main features of PP-Structure are as follows:
grasswolfs's avatar
grasswolfs committed
31

WenmuZhou's avatar
update  
WenmuZhou committed
32
33
34
35
36
37
- Support the layout analysis of documents, divide the documents into 5 types of areas **text, title, table, image and list** (conjunction with Layout-Parser)
- Support to extract the texts from the text, title, picture and list areas (used in conjunction with PP-OCR)
- Support to extract excel files from the table areas
- Support python whl package and command line usage, easy to use
- Support custom training for layout analysis and table structure tasks
- Support Document Visual Question Answering (DOC-VQA) tasks: Semantic Entity Recognition (SER) and Relation Extraction (RE)
38

WenmuZhou's avatar
update  
WenmuZhou committed
39
## 4. Results
40

WenmuZhou's avatar
update  
WenmuZhou committed
41
### 4.1 Layout analysis and table recognition
WenmuZhou's avatar
WenmuZhou committed
42

43
<img src="docs/table/ppstructure.GIF" width="100%"/>
grasswolfs's avatar
grasswolfs committed
44

WenmuZhou's avatar
update  
WenmuZhou committed
45
The figure shows the pipeline of layout analysis + table recognition. The image is first divided into four areas of image, text, title and table by layout analysis, and then OCR detection and recognition is performed on the three areas of image, text and title, and the table is performed table recognition, where the image will also be stored for use.
grasswolfs's avatar
grasswolfs committed
46

WenmuZhou's avatar
update  
WenmuZhou committed
47
### 4.2 DOC-VQA
WenmuZhou's avatar
WenmuZhou committed
48

WenmuZhou's avatar
update  
WenmuZhou committed
49
* SER
50
*
51
![](docs/vqa/result_ser/zh_val_0_ser.jpg) | ![](docs/vqa/result_ser/zh_val_42_ser.jpg)
WenmuZhou's avatar
update  
WenmuZhou committed
52
---|---
WenmuZhou's avatar
WenmuZhou committed
53

WenmuZhou's avatar
update  
WenmuZhou committed
54
Different colored boxes in the figure represent different categories. For xfun dataset, there are three categories: query, answer and header:
WenmuZhou's avatar
opt doc  
WenmuZhou committed
55

WenmuZhou's avatar
update  
WenmuZhou committed
56
57
58
* Dark purple: header
* Light purple: query
* Army green: answer
WenmuZhou's avatar
WenmuZhou committed
59

WenmuZhou's avatar
update  
WenmuZhou committed
60
The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
WenmuZhou's avatar
WenmuZhou committed
61
62


WenmuZhou's avatar
update  
WenmuZhou committed
63
* RE
WenmuZhou's avatar
WenmuZhou committed
64

65
![](docs/vqa/result_re/zh_val_21_re.jpg) | ![](docs/vqa/result_re/zh_val_40_re.jpg)
WenmuZhou's avatar
update  
WenmuZhou committed
66
---|---
WenmuZhou's avatar
WenmuZhou committed
67
68


WenmuZhou's avatar
update  
WenmuZhou committed
69
In the figure, the red box represents the question, the blue box represents the answer, and the question and answer are connected by green lines. The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
WenmuZhou's avatar
WenmuZhou committed
70

WenmuZhou's avatar
update  
WenmuZhou committed
71
## 5. Quick start
WenmuZhou's avatar
WenmuZhou committed
72

WenmuZhou's avatar
update  
WenmuZhou committed
73
Start from [Quick Installation](./docs/quickstart.md)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
74

WenmuZhou's avatar
update  
WenmuZhou committed
75
## 6. PP-Structure System
WenmuZhou's avatar
opt doc  
WenmuZhou committed
76

WenmuZhou's avatar
update  
WenmuZhou committed
77
### 6.1 Layout analysis and table recognition
WenmuZhou's avatar
opt doc  
WenmuZhou committed
78

79
![pipeline](docs/table/pipeline.jpg)
WenmuZhou's avatar
WenmuZhou committed
80

WenmuZhou's avatar
update  
WenmuZhou committed
81
In PP-Structure, the image will be divided into 5 types of areas **text, title, image list and table**. For the first 4 types of areas, directly use PP-OCR system to complete the text detection and recognition. For the table area, after the table structuring process, the table in image is converted into an Excel file with the same table style.
WenmuZhou's avatar
opt doc  
WenmuZhou committed
82

WenmuZhou's avatar
update  
WenmuZhou committed
83
#### 6.1.1 Layout analysis
WenmuZhou's avatar
opt doc  
WenmuZhou committed
84

85
Layout analysis classifies image by region, including the use of Python scripts of layout analysis tools, extraction of designated category detection boxes, performance indicators, and custom training layout analysis models. For details, please refer to [document](layout/README.md).
WenmuZhou's avatar
opt doc  
WenmuZhou committed
86

WenmuZhou's avatar
update  
WenmuZhou committed
87
#### 6.1.2 Table recognition
WenmuZhou's avatar
opt doc  
WenmuZhou committed
88

WenmuZhou's avatar
update  
WenmuZhou committed
89
Table recognition converts table images into excel documents, which include the detection and recognition of table text and the prediction of table structure and cell coordinates. For detailed instructions, please refer to [document](table/README.md)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
90

WenmuZhou's avatar
update  
WenmuZhou committed
91
### 6.2 DOC-VQA
WenmuZhou's avatar
WenmuZhou committed
92

WenmuZhou's avatar
update  
WenmuZhou committed
93
Document Visual Question Answering (DOC-VQA) if a type of Visual Question Answering (VQA), which includes Semantic Entity Recognition (SER) and Relation Extraction (RE) tasks. Based on SER task, text recognition and classification in images can be completed. Based on THE RE task, we can extract the relation of the text content in the image, such as judge the problem pair. For details, please refer to [document](vqa/README.md)
WenmuZhou's avatar
WenmuZhou committed
94

WenmuZhou's avatar
update  
WenmuZhou committed
95
## 7. Model List
96

WenmuZhou's avatar
WenmuZhou committed
97
PP-Structure Series Model List (Updating)
98

WenmuZhou's avatar
WenmuZhou committed
99
### 7.1 Layout analysis model
100

WenmuZhou's avatar
WenmuZhou committed
101
102
103
|model name|description|download|label_map|
| --- | --- | --- |--- |
| ppyolov2_r50vd_dcn_365e_publaynet | The layout analysis model trained on the PubLayNet dataset can divide image into 5 types of areas **text, title, table, picture, and list** | [PubLayNet](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) | {0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}|
104

WenmuZhou's avatar
WenmuZhou committed
105
### 7.2 OCR and table recognition model
106
107
108

|model name|description|model size|download|
| --- | --- | --- | --- |
WenmuZhou's avatar
WenmuZhou committed
109
110
|ch_PP-OCRv2_det_slim|[New] Slim quantization with distillation lightweight model, supporting Chinese, English, multilingual text detection| 3M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_rec_slim|[New] Slim qunatization with distillation lightweight model, supporting Chinese, English, multilingual text recognition| 9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
WenmuZhou's avatar
WenmuZhou committed
111
112
113
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction of English table scene trained on PubLayNet dataset| 18.6M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |

### 7.3 DOC-VQA model
114

WenmuZhou's avatar
update  
WenmuZhou committed
115
116
|model name|description|model size|download|
| --- | --- | --- | --- |
WenmuZhou's avatar
WenmuZhou committed
117
|ser_LayoutXLM_xfun_zhd|SER model trained on xfun Chinese dataset based on LayoutXLM|1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
WenmuZhou's avatar
WenmuZhou committed
118
|re_LayoutXLM_xfun_zh|RE model trained on xfun Chinese dataset based on LayoutXLM|1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
LDOUBLEV's avatar
LDOUBLEV committed
119

andyjpaddle's avatar
andyjpaddle committed
120
If you need to use other models, you can download the model in [PPOCR model_list](../doc/doc_en/models_list_en.md) and  [PPStructure model_list](./docs/models_list.md)