module.py 3.76 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
WenmuZhou's avatar
WenmuZhou committed
7
8
import sys
sys.path.insert(0, ".")
dyning's avatar
dyning committed
9
10
11
12
13
14
15

from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import numpy as np
import paddlehub as hub

dyning's avatar
dyning committed
16
from tools.infer.utility import base64_to_cv2
dyning's avatar
dyning committed
17
18
19
20
21
22
23
24
25
26
27
from tools.infer.predict_det import TextDetector


@moduleinfo(
    name="ocr_det",
    version="1.0.0",
    summary="ocr detection service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRDet(hub.Module):
28
    def _initialize(self, use_gpu=False, enable_mkldnn=False):
dyning's avatar
dyning committed
29
30
31
        """
        initialize with the necessary elements
        """
dyning's avatar
dyning committed
32
33
34
35
        from ocr_det.params import read_params
        cfg = read_params()

        cfg.use_gpu = use_gpu
dyning's avatar
dyning committed
36
37
38
39
40
41
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
dyning's avatar
dyning committed
42
                cfg.gpu_mem = 8000
dyning's avatar
dyning committed
43
44
45
46
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
dyning's avatar
dyning committed
47
        cfg.ir_optim = True
48
        cfg.enable_mkldnn = enable_mkldnn
dyning's avatar
dyning committed
49

dyning's avatar
dyning committed
50
        self.text_detector = TextDetector(cfg)
dyning's avatar
dyning committed
51
52
53
54
55
56
57
58
59
60
61
62
63

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

WenmuZhou's avatar
WenmuZhou committed
64
    def predict(self, images=[], paths=[]):
dyning's avatar
dyning committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        """
        Get the text box in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
WenmuZhou's avatar
WenmuZhou committed
82

dyning's avatar
dyning committed
83
84
85
86
        all_results = []
        for img in predicted_data:
            if img is None:
                logger.info("error in loading image")
dyning's avatar
dyning committed
87
                all_results.append([])
dyning's avatar
dyning committed
88
                continue
dyning's avatar
dyning committed
89
            dt_boxes, elapse = self.text_detector(img)
dyning's avatar
dyning committed
90
            logger.info("Predict time : {}".format(elapse))
dyning's avatar
dyning committed
91

dyning's avatar
dyning committed
92
93
            rec_res_final = []
            for dno in range(len(dt_boxes)):
WenmuZhou's avatar
WenmuZhou committed
94
95
96
                rec_res_final.append({
                    'text_region': dt_boxes[dno].astype(np.int).tolist()
                })
dyning's avatar
dyning committed
97
            all_results.append(rec_res_final)
dyning's avatar
dyning committed
98
99
100
101
102
103
104
105
        return all_results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
dyning's avatar
dyning committed
106
        results = self.predict(images_decode, **kwargs)
dyning's avatar
dyning committed
107
108
        return results

WenmuZhou's avatar
WenmuZhou committed
109

dyning's avatar
dyning committed
110
111
112
113
114
115
if __name__ == '__main__':
    ocr = OCRDet()
    image_path = [
        './doc/imgs/11.jpg',
        './doc/imgs/12.jpg',
    ]
dyning's avatar
dyning committed
116
    res = ocr.predict(paths=image_path)
WenmuZhou's avatar
WenmuZhou committed
117
    print(res)