"include/composable_kernel/utility/config_nvidia.hpp.in" did not exist on "8c923db423ab4ca0a7ac10310cff3528b38bb520"
pse_postprocess.py 3.72 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
import paddle
from paddle.nn import functional as F

from ppocr.postprocess.pse_postprocess.pse import pse


class PSEPostProcess(object):
    """
    The post process for PSE.
    """

    def __init__(self,
                 thresh=0.5,
                 box_thresh=0.85,
                 min_area=16,
                 box_type='box',
                 scale=4,
                 **kwargs):
        assert box_type in ['box', 'poly'], 'Only box and poly is supported'
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.min_area = min_area
        self.box_type = box_type
        self.scale = scale

    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
        if not isinstance(pred, paddle.Tensor):
            pred = paddle.to_tensor(pred)
        pred = F.interpolate(pred, scale_factor=4 // self.scale, mode='bilinear')

        score = F.sigmoid(pred[:, 0, :, :])

        kernels = (pred > self.thresh).astype('float32')
        text_mask = kernels[:, 0, :, :]
        kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask

        score = score.numpy()
        kernels = kernels.numpy().astype(np.uint8)

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
WenmuZhou's avatar
WenmuZhou committed
63
            boxes, scores = self.boxes_from_bitmap(score[batch_index], kernels[batch_index], shape_list[batch_index])
WenmuZhou's avatar
WenmuZhou committed
64
65
66
67

            boxes_batch.append({'points': boxes, 'scores': scores})
        return boxes_batch

WenmuZhou's avatar
WenmuZhou committed
68
    def boxes_from_bitmap(self, score, kernels, shape):
WenmuZhou's avatar
WenmuZhou committed
69
        label = pse(kernels, self.min_area)
WenmuZhou's avatar
WenmuZhou committed
70
        return self.generate_box(score, label, shape)
WenmuZhou's avatar
WenmuZhou committed
71

WenmuZhou's avatar
WenmuZhou committed
72
73
    def generate_box(self, score, label, shape):
        src_h, src_w, ratio_h, ratio_w = shape
WenmuZhou's avatar
WenmuZhou committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        label_num = np.max(label) + 1

        boxes = []
        scores = []
        for i in range(1, label_num):
            ind = label == i
            points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]

            if points.shape[0] < self.min_area:
                label[ind] = 0
                continue

            score_i = np.mean(score[ind])
            if score_i < self.box_thresh:
                label[ind] = 0
                continue

            if self.box_type == 'box':
                rect = cv2.minAreaRect(points)
                bbox = cv2.boxPoints(rect)
            elif self.box_type == 'poly':
                box_height = np.max(points[:, 1]) + 10
                box_width = np.max(points[:, 0]) + 10

                mask = np.zeros((box_height, box_width), np.uint8)
                mask[points[:, 1], points[:, 0]] = 255

                contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                bbox = np.squeeze(contours[0], 1)
            else:
                raise NotImplementedError

            bbox[:, 0] = np.clip(
WenmuZhou's avatar
WenmuZhou committed
107
                np.round(bbox[:, 0] / ratio_w), 0, src_w)
WenmuZhou's avatar
WenmuZhou committed
108
            bbox[:, 1] = np.clip(
WenmuZhou's avatar
WenmuZhou committed
109
                np.round(bbox[:, 1] / ratio_h), 0, src_h)
WenmuZhou's avatar
WenmuZhou committed
110
111
112
            boxes.append(bbox)
            scores.append(score_i)
        return boxes, scores