whl_en.md 12.3 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
# paddleocr package

## Get started quickly
### install package
install by pypi
```bash
pip install paddleocr
```

build own whl package and install
```bash
python setup.py bdist_wheel
WenmuZhou's avatar
WenmuZhou committed
13
pip install dist/paddleocr-0.0.3-py3-none-any.whl
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
18
19
```
### 1. Use by code

* detection and recognition
```python
from paddleocr import PaddleOCR,draw_ocr
WenmuZhou's avatar
WenmuZhou committed
20
ocr = PaddleOCR() # need to run only once to download and load model into memory
WenmuZhou's avatar
WenmuZhou committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
WenmuZhou's avatar
WenmuZhou committed
42
......
WenmuZhou's avatar
WenmuZhou committed
43
44
45
46
47
48
49
50
51
52
53
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>

* only detection
```python
from paddleocr import PaddleOCR,draw_ocr
WenmuZhou's avatar
WenmuZhou committed
54
ocr = PaddleOCR() # need to run only once to download and load model into memory
WenmuZhou's avatar
WenmuZhou committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# draw result
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
WenmuZhou's avatar
WenmuZhou committed
74
......
WenmuZhou's avatar
WenmuZhou committed
75
76
77
78
79
80
81
82
83
84
85
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det.jpg" width="800">
</div>

* only recognition
```python
from paddleocr import PaddleOCR
WenmuZhou's avatar
WenmuZhou committed
86
ocr = PaddleOCR() # need to run only once to load model into memory
WenmuZhou's avatar
WenmuZhou committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path,det=False)
for line in result:
    print(line)
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

### Use by command line

show help information
```bash
paddleocr -h
```

* detection and recognition
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
WenmuZhou's avatar
WenmuZhou committed
115
......
WenmuZhou's avatar
WenmuZhou committed
116
117
118
119
120
121
122
123
124
125
126
127
```

* only detection
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --rec false
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
WenmuZhou's avatar
WenmuZhou committed
128
......
WenmuZhou's avatar
WenmuZhou committed
129
130
131
132
133
134
135
136
137
138
139
140
```

* only recognition
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --det false
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

WenmuZhou's avatar
WenmuZhou committed
141
142
143
144
145
146
147
148
149
## Use custom model
When the built-in model cannot meet the needs, you need to use your own trained model.
First, refer to the first section of [inference_en.md](./inference_en.md) to convert your det and rec model to inference model, and then use it as follows

### 1. Use by code

```python
from paddleocr import PaddleOCR,draw_ocr
# The path of detection and recognition model must contain model and params files
WenmuZhou's avatar
WenmuZhou committed
150
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}',rec_model_dir='{your_rec_model_dir}å')
WenmuZhou's avatar
WenmuZhou committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

### Use by command line

```bash
WenmuZhou's avatar
WenmuZhou committed
170
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir}
WenmuZhou's avatar
WenmuZhou committed
171
172
```

WenmuZhou's avatar
WenmuZhou committed
173
174
175
176
177
178
179
180
## Parameter Description

| Parameter                    | Description                                                                                                                                                                                                                 | Default value                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | use GPU or not                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | GPU memory size used for initialization                                                                                                                                                                                              | 8000M                   |
| image_dir               | The images path or folder path for predicting when used by the command line                                                                                                                                                                           |                         |
| det_algorithm           | Type of detection algorithm selected                                                                                                                                                                                                   | DB                      |
WenmuZhou's avatar
WenmuZhou committed
181
| det_model_dir           | the text detection inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/det`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None           |
WenmuZhou's avatar
WenmuZhou committed
182
183
184
185
186
187
188
189
| det_max_side_len        | The maximum size of the long side of the image. When the long side exceeds this value, the long side will be resized to this size, and the short side will be scaled proportionally                                                                                                                         | 960                     |
| det_db_thresh           | Binarization threshold value of DB output map                                                                                                                                                                                        | 0.3                     |
| det_db_box_thresh       | The threshold value of the DB output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.5                     |
| det_db_unclip_ratio     | The expanded ratio of DB output box                                                                                                                                                                                             | 2                       |
| det_east_score_thresh   | Binarization threshold value of EAST output map                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | The threshold value of the EAST output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | The NMS threshold value of EAST model output box                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | Type of recognition algorithm selected                                                                                                                                                                                                | CRNN                    |
WenmuZhou's avatar
WenmuZhou committed
190
| rec_model_dir           | the text recognition inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/rec`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
WenmuZhou's avatar
WenmuZhou committed
191
192
193
| rec_image_shape         | image shape of recognition algorithm                                                                                                                                                                                            | "3,32,320"              |
| rec_char_type           | Character type of recognition algorithm, Chinese (ch) or English (en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | When performing recognition, the batchsize of forward images                                                                                                                                                                                         | 30                      |
WenmuZhou's avatar
WenmuZhou committed
194
195
| max_text_length         | The maximum text length that the recognition algorithm can recognize                                                                                                                                                                                         | 25                      |
| rec_char_dict_path      | the alphabet path which needs to be modified to your own path when `rec_model_Name` use mode 2                                                                                                                                              | ./ppocr/utils/ppocr_keys_v1.txt                        |
WenmuZhou's avatar
WenmuZhou committed
196
197
198
199
| use_space_char          | Whether to recognize spaces                                                                                                                                                                                                         | TRUE                    |
| enable_mkldnn           | Whether to enable mkldnn                                                                                                                                                                                                       | FALSE                   |
| det                     | Enable detction when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |
| rec                     | Enable detction when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |