predict_det.py 6.63 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
from ppocr.data.det.east_process import EASTProcessTest
from ppocr.data.det.db_process import DBProcessTest
from ppocr.postprocess.db_postprocess import DBPostProcess
from ppocr.postprocess.east_postprocess import EASTPostPocess
import copy
import numpy as np
import math
import time
27
import sys
LDOUBLEV's avatar
LDOUBLEV committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


class TextDetector(object):
    def __init__(self, args):
        max_side_len = args.det_max_side_len
        self.det_algorithm = args.det_algorithm
        preprocess_params = {'max_side_len': max_side_len}
        postprocess_params = {}
        if self.det_algorithm == "DB":
            self.preprocess_op = DBProcessTest(preprocess_params)
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
            self.postprocess_op = DBPostProcess(postprocess_params)
        elif self.det_algorithm == "EAST":
            self.preprocess_op = EASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
            self.postprocess_op = EASTPostPocess(postprocess_params)
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="det")

    def order_points_clockwise(self, pts):
56
57
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
58
        # sort the points based on their x-coordinates
59
        """
LDOUBLEV's avatar
LDOUBLEV committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

    def expand_det_res(self, points, bbox_height, bbox_width, img_height,
                       img_width):
        if bbox_height * 1.0 / bbox_width >= 2.0:
            expand_w = bbox_width * 0.20
            expand_h = bbox_width * 0.20
        elif bbox_width * 1.0 / bbox_height >= 3.0:
            expand_w = bbox_height * 0.20
            expand_h = bbox_height * 0.20
        else:
            expand_w = bbox_height * 0.1
            expand_h = bbox_height * 0.1

        points[0, 0] = int(max((points[0, 0] - expand_w), 0))
        points[1, 0] = int(min((points[1, 0] + expand_w), img_width))
        points[3, 0] = int(max((points[3, 0] - expand_w), 0))
        points[2, 0] = int(min((points[2, 0] + expand_w), img_width))

        points[0, 1] = int(max((points[0, 1] - expand_h), 0))
        points[1, 1] = int(max((points[1, 1] - expand_h), 0))
        points[3, 1] = int(min((points[3, 1] + expand_h), img_height))
        points[2, 1] = int(min((points[2, 1] + expand_h), img_height))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            left = int(np.min(box[:, 0]))
            right = int(np.max(box[:, 0]))
            top = int(np.min(box[:, 1]))
            bottom = int(np.max(box[:, 1]))
            bbox_height = bottom - top
            bbox_width = right - left
            diffh = math.fabs(box[0, 1] - box[1, 1])
            diffw = math.fabs(box[0, 0] - box[3, 0])
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            if diffh <= 10 and diffw <= 10:
                box = self.expand_det_res(
                    copy.deepcopy(box), bbox_height, bbox_width, img_height,
                    img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def __call__(self, img):
        ori_im = img.copy()
        im, ratio_list = self.preprocess_op(img)
        if im is None:
            return None, 0
        im = im.copy()
        starttime = time.time()
        self.input_tensor.copy_from_cpu(im)
        self.predictor.zero_copy_run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        outs_dict = {}
        if self.det_algorithm == "EAST":
            outs_dict['f_score'] = outputs[0]
            outs_dict['f_geo'] = outputs[1]
        else:
145
            outs_dict['maps'] = outputs[0]
LDOUBLEV's avatar
LDOUBLEV committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
        dt_boxes = dt_boxes_list[0]
        dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
    image_file_list = utility.get_image_file_list(args.image_dir)
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        print("Predict time of %s:" % image_file, elapse)
        utility.draw_text_det_res(dt_boxes, image_file)
    print("Avg Time:", total_time / (count - 1))