det_db_head.py 7.44 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid


class DBHead(object):
    """
    Differentiable Binarization (DB) for text detection:
        see https://arxiv.org/abs/1911.08947
    args:
        params(dict): super parameters for build DB network
    """

    def __init__(self, params):
        self.k = params['k']
        self.inner_channels = params['inner_channels']
        self.C, self.H, self.W = params['image_shape']
        print(self.C, self.H, self.W)

    def binarize(self, x):
        conv1 = fluid.layers.conv2d(
            input=x,
            num_filters=self.inner_channels // 4,
            filter_size=3,
            padding=1,
            param_attr=fluid.initializer.MSRAInitializer(uniform=False),
            bias_attr=False)
        conv_bn1 = fluid.layers.batch_norm(
            input=conv1,
            param_attr=fluid.initializer.ConstantInitializer(value=1.0),
            bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
            act="relu")
        conv2 = fluid.layers.conv2d_transpose(
            input=conv_bn1,
            num_filters=self.inner_channels // 4,
            filter_size=2,
            stride=2,
            param_attr=fluid.initializer.MSRAInitializer(uniform=False),
            bias_attr=self._get_bias_attr(0.0004, conv_bn1.shape[1], "conv2"),
            act=None)
        conv_bn2 = fluid.layers.batch_norm(
            input=conv2,
            param_attr=fluid.initializer.ConstantInitializer(value=1.0),
            bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
            act="relu")
        conv3 = fluid.layers.conv2d_transpose(
            input=conv_bn2,
            num_filters=1,
            filter_size=2,
            stride=2,
            param_attr=fluid.initializer.MSRAInitializer(uniform=False),
            bias_attr=self._get_bias_attr(0.0004, conv_bn2.shape[1], "conv3"),
            act=None)
        out = fluid.layers.sigmoid(conv3)
        return out

    def thresh(self, x):
        conv1 = fluid.layers.conv2d(
            input=x,
            num_filters=self.inner_channels // 4,
            filter_size=3,
            padding=1,
            param_attr=fluid.initializer.MSRAInitializer(uniform=False),
            bias_attr=False)
        conv_bn1 = fluid.layers.batch_norm(
            input=conv1,
            param_attr=fluid.initializer.ConstantInitializer(value=1.0),
            bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
            act="relu")
        conv2 = fluid.layers.conv2d_transpose(
            input=conv_bn1,
            num_filters=self.inner_channels // 4,
            filter_size=2,
            stride=2,
            param_attr=fluid.initializer.MSRAInitializer(uniform=False),
            bias_attr=self._get_bias_attr(0.0004, conv_bn1.shape[1], "conv2"),
            act=None)
        conv_bn2 = fluid.layers.batch_norm(
            input=conv2,
            param_attr=fluid.initializer.ConstantInitializer(value=1.0),
            bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
            act="relu")
        conv3 = fluid.layers.conv2d_transpose(
            input=conv_bn2,
            num_filters=1,
            filter_size=2,
            stride=2,
            param_attr=fluid.initializer.MSRAInitializer(uniform=False),
            bias_attr=self._get_bias_attr(0.0004, conv_bn2.shape[1], "conv3"),
            act=None)
        out = fluid.layers.sigmoid(conv3)
        return out

    def _get_bias_attr(self, l2_decay, k, name, gradient_clip=None):
        regularizer = fluid.regularizer.L2Decay(l2_decay)
        stdv = 1.0 / math.sqrt(k * 1.0)
        initializer = fluid.initializer.Uniform(-stdv, stdv)
        bias_attr = fluid.ParamAttr(
            regularizer=regularizer,
            gradient_clip=gradient_clip,
            initializer=initializer,
            name=name + "_b_attr")
        return bias_attr

    def step_function(self, x, y):
        return fluid.layers.reciprocal(1 + fluid.layers.exp(-self.k * (x - y)))

    def __call__(self, conv_features, mode="train"):
        c2, c3, c4, c5 = conv_features
        param_attr = fluid.initializer.MSRAInitializer(uniform=False)
        in5 = fluid.layers.conv2d(
            input=c5,
            num_filters=self.inner_channels,
            filter_size=1,
            param_attr=param_attr,
            bias_attr=False)
        in4 = fluid.layers.conv2d(
            input=c4,
            num_filters=self.inner_channels,
            filter_size=1,
            param_attr=param_attr,
            bias_attr=False)
        in3 = fluid.layers.conv2d(
            input=c3,
            num_filters=self.inner_channels,
            filter_size=1,
            param_attr=param_attr,
            bias_attr=False)
        in2 = fluid.layers.conv2d(
            input=c2,
            num_filters=self.inner_channels,
            filter_size=1,
            param_attr=param_attr,
            bias_attr=False)

        out4 = fluid.layers.elementwise_add(
            x=fluid.layers.resize_nearest(
                input=in5, scale=2), y=in4)  # 1/16
        out3 = fluid.layers.elementwise_add(
            x=fluid.layers.resize_nearest(
                input=out4, scale=2), y=in3)  # 1/8
        out2 = fluid.layers.elementwise_add(
            x=fluid.layers.resize_nearest(
                input=out3, scale=2), y=in2)  # 1/4

        p5 = fluid.layers.conv2d(
            input=in5,
            num_filters=self.inner_channels // 4,
            filter_size=3,
            padding=1,
            param_attr=param_attr,
            bias_attr=False)
        p5 = fluid.layers.resize_nearest(input=p5, scale=8)
        p4 = fluid.layers.conv2d(
            input=out4,
            num_filters=self.inner_channels // 4,
            filter_size=3,
            padding=1,
            param_attr=param_attr,
            bias_attr=False)
        p4 = fluid.layers.resize_nearest(input=p4, scale=4)
        p3 = fluid.layers.conv2d(
            input=out3,
            num_filters=self.inner_channels // 4,
            filter_size=3,
            padding=1,
            param_attr=param_attr,
            bias_attr=False)
        p3 = fluid.layers.resize_nearest(input=p3, scale=2)
        p2 = fluid.layers.conv2d(
            input=out2,
            num_filters=self.inner_channels // 4,
            filter_size=3,
            padding=1,
            param_attr=param_attr,
            bias_attr=False)

        fuse = fluid.layers.concat(input=[p5, p4, p3, p2], axis=1)
        shrink_maps = self.binarize(fuse)
        if mode != "train":
199
            return {"maps", shrink_maps}
LDOUBLEV's avatar
LDOUBLEV committed
200
201
202
203
204
205
206
        threshold_maps = self.thresh(fuse)
        binary_maps = self.step_function(shrink_maps, threshold_maps)
        y = fluid.layers.concat(
            input=[shrink_maps, threshold_maps, binary_maps], axis=1)
        predicts = {}
        predicts['maps'] = y
        return predicts