det_r50_vd_db.yml 3.04 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
Global:
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
WenmuZhou's avatar
WenmuZhou committed
6
  save_model_dir: ./output/det_r50_vd/
WenmuZhou's avatar
WenmuZhou committed
7
8
9
10
11
12
  save_epoch_step: 1200
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 8
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: False
WenmuZhou's avatar
WenmuZhou committed
13
14
  pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
  checkpoints:
15
  save_inference_dir:
WenmuZhou's avatar
WenmuZhou committed
16
17
18
  use_visualdl: True
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt
19

WenmuZhou's avatar
WenmuZhou committed
20
21
22
23
24
25
26
27
28
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  learning_rate:
    lr: 0.001
  regularizer:
    name: 'L2'
    factor: 0
LDOUBLEV's avatar
LDOUBLEV committed
29

WenmuZhou's avatar
WenmuZhou committed
30
31
32
33
34
35
36
37
38
39
40
41
42
Architecture:
  type: det
  algorithm: DB
  Transform:
  Backbone:
    name: ResNet
    layers: 50
  Neck:
    name: FPN
    out_channels: 256
  Head:
    name: DBHead
    k: 50
LDOUBLEV's avatar
LDOUBLEV committed
43
44

Loss:
WenmuZhou's avatar
WenmuZhou committed
45
  name: DBLoss
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

PostProcess:
WenmuZhou's avatar
WenmuZhou committed
53
  name: DBPostProcess
LDOUBLEV's avatar
LDOUBLEV committed
54
  thresh: 0.3
WenmuZhou's avatar
WenmuZhou committed
55
  box_thresh: 0.6
LDOUBLEV's avatar
LDOUBLEV committed
56
57
  max_candidates: 1000
  unclip_ratio: 1.5
WenmuZhou's avatar
WenmuZhou committed
58
59
60
61
62
63
64
65

Metric:
  name: DetMetric
  main_indicator: hmean

TRAIN:
  dataset:
    name: SimpleDataSet
WenmuZhou's avatar
WenmuZhou committed
66
    data_dir: ./detection/
WenmuZhou's avatar
WenmuZhou committed
67
    file_list:
WenmuZhou's avatar
WenmuZhou committed
68
      - ./detection/train_icdar2015_label.txt # dataset1
WenmuZhou's avatar
WenmuZhou committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
            - { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
      - EastRandomCropData:
          size: [ 640,640 ]
          max_tries: 50
          keep_ratio: true
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
WenmuZhou's avatar
WenmuZhou committed
98
          keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order
WenmuZhou's avatar
WenmuZhou committed
99
100
101
102
  loader:
    shuffle: True
    drop_last: False
    batch_size: 16
WenmuZhou's avatar
WenmuZhou committed
103
    num_workers: 8
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107

EVAL:
  dataset:
    name: SimpleDataSet
WenmuZhou's avatar
WenmuZhou committed
108
    data_dir: ./detection/
WenmuZhou's avatar
WenmuZhou committed
109
    file_list:
WenmuZhou's avatar
WenmuZhou committed
110
      - ./detection/test_icdar2015_label.txt
WenmuZhou's avatar
WenmuZhou committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          image_shape: [736,1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - keepKeys:
          keep_keys: ['image','shape','polys','ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size: 1 # must be 1
WenmuZhou's avatar
WenmuZhou committed
130
    num_workers: 8