rec_r31_sar.yml 2.15 KB
Newer Older
andyjpaddle's avatar
andyjpaddle committed
1
2
3
4
5
Global:
  use_gpu: true
  epoch_num: 5
  log_smooth_window: 20
  print_batch_step: 20
andyjpaddle's avatar
andyjpaddle committed
6
  save_model_dir: ./sar_rec
andyjpaddle's avatar
andyjpaddle committed
7
8
9
10
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
andyjpaddle's avatar
andyjpaddle committed
11
  pretrained_model:
andyjpaddle's avatar
andyjpaddle committed
12
13
14
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
andyjpaddle's avatar
andyjpaddle committed
15
  infer_img: 
andyjpaddle's avatar
andyjpaddle committed
16
17
  # for data or label process
  character_dict_path: ppocr/utils/dict90.txt
18
  character_type: EN_symbol
andyjpaddle's avatar
andyjpaddle committed
19
20
21
  max_text_length: 30
  infer_mode: False
  use_space_char: False
andyjpaddle's avatar
andyjpaddle committed
22
  rm_symbol: True
andyjpaddle's avatar
andyjpaddle committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  save_res_path: ./output/rec/predicts_sar.txt

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Piecewise
    decay_epochs: [3, 4]
    values: [0.001, 0.0001, 0.00001] 
  regularizer:
    name: 'L2'
    factor: 0

Architecture:
  model_type: rec
  algorithm: SAR
  Transform:
  Backbone:
    name: ResNet31
  Head:
    name: SARHead

Loss:
  name: SARLoss

PostProcess:
  name: SARLabelDecode

Metric:
  name: RecMetric


Train:
  dataset:
andyjpaddle's avatar
andyjpaddle committed
58
    name: SimpleDataSet
59
60
    label_file_list: ['./train_data/train_list.txt']
    data_dir: ./train_data/
andyjpaddle's avatar
andyjpaddle committed
61
    ratio_list: 1.0
andyjpaddle's avatar
andyjpaddle committed
62
63
64
65
66
67
68
69
70
71
72
73
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - SARLabelEncode: # Class handling label
      - SARRecResizeImg:
          image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
          width_downsample_ratio: 0.25
      - KeepKeys:
          keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
  loader:
    shuffle: True
74
    batch_size_per_card: 64
andyjpaddle's avatar
andyjpaddle committed
75
76
77
78
79
80
81
    drop_last: True
    num_workers: 8
    use_shared_memory: False

Eval:
  dataset:
    name: LMDBDataSet
82
    data_dir: ./eval_data/evaluation/
andyjpaddle's avatar
andyjpaddle committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - SARLabelEncode: # Class handling label
      - SARRecResizeImg:
          image_shape: [3, 48, 48, 160]
          width_downsample_ratio: 0.25
      - KeepKeys:
          keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 64
    num_workers: 4
    use_shared_memory: False
andyjpaddle's avatar
andyjpaddle committed
99